当前位置: 首页 > news >正文

负载均衡概述

负载均衡

负载均衡 建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。

四层负载均衡 vs 七层负载均衡

四层负载均衡(目标地址和端口交换)

主要通过报文中的目标地址和端口,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内部服务器。

以常见的 TCP 为例,负载均衡设备在接收到第一个来自客户端的 SYN 请求时,即通过上述方式选择一个最佳的服务器,并对报文中目标 IP 地址进行修改(改为后端服务器 IP),直接转发给该服务器。TCP 的连接建立,即三次握手是客户端和服务器直接建立的,负载均衡设备只是起到一个类似路由器的转发动作。在某些部署情况下,为保证服务器回包可以正确返回给负载均衡设备,在转发报文的同时可能还会对报文原来的源地址进行修改。实现四层负载均衡的软件有:

F5:硬件负载均衡器,功能很好,但是成本很高。

lvs:重量级的四层负载软件。

nginx:轻量级的四层负载软件,带缓存功能,正则表达式较灵活。

haproxy:模拟四层转发,较灵活。

七层负载均衡(内容交换)

所谓七层负载均衡,也称为“内容交换”,也就是主要通过报文中的真正有意义的应用层内容,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内部服务器。

七层应用负载的好处,是使得整个网络更智能化。例如访问一个网站的用户流量,可以通过七层的方式,将对图片类的请求转发到特定的图片服务器并可以使用缓存技术;将对文字类的请求可以转发到特定的文字服务器并可以使用压缩技术。实现七层负载均衡的软件有:

haproxy:天生负载均衡技能,全面支持七层代理,会话保持,标记,路径转移;

nginx:只在 http 协议和 mail 协议上功能比较好,性能与 haproxy 差不多;

apache:功能较差

Mysql proxy:功能尚可。

负载均衡算法**/策略**
轮循均衡(Round Robin)

每一次来自网络的请求轮流分配给内部中的服务器,从 1 至 N 然后重新开始。此种均衡算法适合于服务器组中的所有服务器都有相同的软硬件配置并且平均服务请求相对均衡的情况。

权重轮循均衡(Weighted Round Robin)

根据服务器的不同处理能力,给每个服务器分配不同的权值,使其能够接受相应权值数的服务请求。例如:服务器 A 的权值被设计成 1,B 的权值是 3,C 的权值是 6,则服务器 A、B、C 将分别接受到 10%、30%、60%的服务请求。此种均衡算法能确保高性能的服务器得到更多的使用率,避免低性能的服务器负载过重。

随机均衡(Random)

把来自网络的请求随机分配给内部中的多个服务器。

权重随机均衡(Weighted Random)

此种均衡算法类似于权重轮循算法,不过在处理请求分担时是个随机选择的过程。

响应速度均衡(Response Time 探测时间)

负载均衡设备对内部各服务器发出一个探测请求(例如 Ping),然后根据内部中各服务器对探测请求的最快响应时间来决定哪一台服务器来响应客户端的服务请求。此种均衡算法能较好的反映服务器的当前运行状态,但这最快响应时间仅仅指的是负载均衡设备与服务器间的最快响应时间,而不是客户端与服务器间的最快响应时间。

最少连接数均衡(Least Connection)

最少连接数均衡算法对内部中需负载的每一台服务器都有一个数据记录,记录当前该服务器正在处理的连接数量,当有新的服务连接请求时,将把当前请求分配给连接数最少的服务器,使均衡更加符合实际情况,负载更加均衡。此种均衡算法适合长时处理的请求服务,如 FTP。

处理能力均衡(CPU、内存)

此种均衡算法将把服务请求分配给内部中处理负荷(根据服务器 CPU 型号、CPU 数量、内存大小及当前连接数等换算而成)最轻的服务器,由于考虑到了内部服务器的处理能力及当前网络运行状况,所以此种均衡算法相对来说更加精确,尤其适合运用到第七层(应用层)负载均衡的情况下。

DNS 响应均衡(Flash DNS)

在此均衡算法下,分处在不同地理位置的负载均衡设备收到同一个客户端的域名解析请求,并在同一时间内把此域名解析成各自相对应服务器的 IP 地址并返回给客户端,则客户端将以最先收到的域名解析 IP 地址来继续请求服务,而忽略其它的 IP 地址响应。在种均衡策略适合应用在全局负载均衡的情况下,对本地负载均衡是没有意义的。

哈希算法

一致性哈希一致性 Hash,相同参数的请求总是发到同一提供者。当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。

IP 地址散列(保证客户端服务器对应关系稳定)

通过管理发送方 IP 和目的地 IP 地址的散列,将来自同一发送方的分组(或发送至同一目的地的分组)统一转发到相同服务器的算法。当客户端有一系列业务需要处理而必须和一个服务器反复通信时,该算法能够以流(会话)为单位,保证来自相同客户端的通信能够一直在同一服务器中进行处理。

URL 散列

通过管理客户端请求 URL 信息的散列,将发送至相同 URL 的请求转发至同一服务器的算法。

http://www.lryc.cn/news/275374.html

相关文章:

  • C# WinForm MessageBox自定义按键文本 COM组件版
  • 基于SpringBoot微信小程序的宠物美容预约系统设计与实现
  • 在 docker 容器中配置双网卡,解决通讯的问题
  • uniapp中uview组件库CircleProgress 圆形进度条丰富的使用方法
  • Linux操作系统基础(12):Linux的Shell解释器
  • Android开发编程从入门到精通,安卓技术从初级到高级全套教学
  • HackTheBox - Medium - Linux - BroScience
  • `nginx/conf/nginx.conf`最简配置说明
  • 商务智能|描述性统计分析与数据可视化
  • 【游记】GDKOI2024
  • linux支持的零拷贝类型以及java对应的支持
  • 【TypeScript】声明文件
  • 基于Flutter构建小型新闻App
  • 利用python将excel文件转成txt文件,再将txt文件上传hdfs,最后传入hive中
  • 【自学笔记】01Java基础-07面向对象基础-02继承
  • 二分查找(一)
  • 【华为OD真题 Python】精准核酸检测
  • Springboot使用logback
  • 【REST2SQL】03 GO读取JSON文件
  • 数据库-MySQL 启动方式
  • YAML使用
  • 读书之深入理解ffmpeg_简单笔记2(初步)
  • ELK+kafka+filebeat企业内部日志分析系统搭建
  • 勒索检测能力升级,亚信安全发布《勒索家族和勒索事件监控报告》
  • 编译原理复习的有用链接
  • 不带控制器打包exe,转pdf文件时失败的原因
  • Python 注释的方法
  • webman插件创建
  • 大模型迎来“AppStore时刻”,OpenAI给2024的新想象
  • ubuntu解决在pycharm上使用jupyter无法导入虚拟环境中的包的问题