Pandas之从sql库中导入数据的几种方法分析
1.使用mysql-connector-python库将SQL文件导入到Python中,并查询数据库中的表
确保已经安装mysql-connector-python库
#导入模块
import mysql.connector# 建立与MySQL数据库的连接
conn = mysql.connector.connect(host="localhost",user="username",password="password",database="database_name")# 创建游标对象
cursor = conn.cursor()#读取SQL文件内容:
with open("path/to/sql_file.sql", "r") as file:sql_script = file.read()
cursor.execute(sql_script, multi=True)
conn.commit()# 执行查询语句
query = "SELECT * FROM table_name"
cursor.execute(query)# 获取结果集
result = cursor.fetchall()# 显示结果
for row in result:print(row)# 关闭游标和连接
cursor.close()
conn.close()
"localhost","username","password","database_name"分别替换成,主机名字,sql的用户名字,用户密码,所要导入的数据库名字
"path/to/sql_file.sql"替换为数据库粘贴到pycharm以后得实际路径
"table_name"改为实际表名
#在sql中查询用户名
SELECT User FROM mysql.user;
#在sql中查询主机名
SELECT HOSTNAME() AS hostname;
2.MySQLdb模块导入sql文件到Python中
#安装MySQLdb库:
pip install MySQL-python#导入MySQLdb模块:
import MySQLdb#建立与MySQL数据库的连接:
conn = MySQLdb.connect(host="localhost",user="username",passwd="password",db="database_name")#创建游标对象:
cursor = conn.cursor()
#读取SQL文件内容:
with open("path/to/sql_file.sql", "r") as file:sql_script = file.read()#执行SQL脚本:
cursor.execute(sql_script)#提交更改到数据库:
conn.commit()#关闭游标和连接:
cursor.close()
conn.close()
(如果你使用的是Python 3,MySQLdb可能不兼容。可以尝试安装替代模块,如pymysql
或mysql-connector-python
。)
3.使用pymysql库将SQL文件导入到Python中
#安装pymysql库:
pip install pymysql#导入pymysql模块:
import pymysql#建立与MySQL数据库的连接:
conn = pymysql.connect(host="localhost",user="username",password="password",db="database_name")
#请根据实际情况修改host、user、password和db等参数。#创建游标对象:
cursor = conn.cursor()#读取SQL文件内容:
with open("path/to/sql_file.sql", "r") as file:sql_script = file.read()
#将"path/to/sql_file.sql"替换为您要导入的SQL文件的路径。#执行SQL脚本:
cursor.execute(sql_script)#提交更改到数据库:
conn.commit()#关闭游标和连接:
cursor.close()
conn.close()