当前位置: 首页 > news >正文

32阵元 MVDR和DREC DOA估计波束方向图对比

32阵元 MVDR和DREC DOA估计波束方向图对比

一、原理

MVDR原理:https://zhuanlan.zhihu.com/p/457528114

DREC原理(无失真响应特征干扰相消器):http://radarst.ijournal.cn/html/2019/3/201903018.html

主要参数:
阵元:32个阵元,可以设置。
期望信号:1个,角度、信噪比可以设置。
干扰信号:2个,角度、信噪比可以设置。

二、效果

波束方向图效果:
在这里插入图片描述

三、代码

部分代码:

clc;
clear all;
close all;
%% 
v=2;    %波长为2
d =v/2; %阵元间距
N=32;   %阵元个数
theta_3db = 2/N*180/pi; %-3db波束宽度
for ix=1:1:NA(ix,1)=(ix-1)*d;%阵元间距向量
end%% 接收信号模型
fs=10;  %信号频率
fj1=1;  %干扰1频率
fj2=2;  %干扰2频率SNR= -10; %信噪比
JNR1=20;  %干噪比1
JNR2=20;  %干噪比2theta_s=10*pi/180;  %信号入射方向
theta_j1=20*pi/180; %干扰1,间距大于主瓣宽度
theta_j2=25*pi/180; %干扰2,间距大于主瓣宽度A0=sqrt(10^(SNR/10)); %信号幅度
A1=sqrt(10^(JNR1/10));%干扰1幅度
A2=sqrt(10^(JNR2/10));%干扰2幅度
for k=1:1:Nas(k,1)=exp(j*2*pi*sin(theta_s)*A(k,1)/v);  %信号方向导向矢量aj1(k,1)=exp(j*2*pi*sin(theta_j1)*A(k,1)/v);%干扰1方向导向矢量aj2(k,1)=exp(j*2*pi*sin(theta_j2)*A(k,1)/v);%干扰2方向导向矢量
end
M =1000;%快拍数
t=0:1/(4*fs):(M-1)/(4*fs);%快拍时间T=length(t);%快拍时间长度
S0=A0*exp(sqrt(-1)*(2*pi*fs*t+pi*rand(1,T)));    %构造信号   
J1=A1*exp(sqrt(-1)*(2*pi*fj1*t+pi*rand(1,T)));   %构造干扰信号1 
J2=A2*exp(sqrt(-1)*(2*pi*fj2*t+pi*rand(1,T)));   %构造干扰信号2 S=as*S0;  %信号乘以信号方向导向矢量
I1=aj1*J1;%干扰1乘以干扰1方向导向矢量
I2=aj2*J2;%干扰2乘以干扰2方向导向矢量Noise=zeros(N,T);%构造归一化高斯噪声
for k=1:1:NNoise(k,:)=(randn(1,T)+sqrt(-1)*randn(1,T))/sqrt(2);
endX=S+I1+I2+Noise; % 叠加两个干扰信号和噪声,得到新的信号X
R=X*X'/T;        % 干扰和噪声的协方差矩阵%% 图形绘制
figure(1);
Fa=20*log10(abs(F_s)./max_st); %归一化方向图 db
plot(theta_scan/pi*180, Fa,'b');hold on
Fa=20*log10(abs(Fsum)./maxs);%归一化方向图 db
plot(theta_scan/pi*180, Fa,'r'); grid on;Fa1=20*log10(abs(Fsum1)./maxs1);%归一化方向图 db
plot(theta_scan/pi*180, Fa1,'g');
xlabel('theta/°');
ylabel('幅度/dB');
title('波束方向图');
legend('原始波束扫描方向图','MVDR波束方向图','DREC波束方向图')

四、信噪比SNR和信干噪比SINR的关系

信噪比的表达式为:

S N R = 10 lg ⁡ P S P N S N R=10 \lg \frac{P_S}{P_N} SNR=10lgPNPS,其中:

SNR:信噪比,单位是dB。
PS:信号的有效功率。
PN:噪声的有效功率。

信干噪比SINR(Signal to Interference plus Noise Ratio)指的是系统中信号与干扰和噪声之和的比。

信干噪比表达式为:

S I N R = 10 lg ⁡ P S P I + P N S I N R=10 \lg \frac{P_S}{P_I+P_N} SINR=10lgPI+PNPS,其中:

SINR:信干噪比,单位是dB。
PS:信号的有效功率。
PN:噪声的有效功率。
PI:干扰信号的有效功率。

由上述理论可知,SNR增加,即相对于Ps增加,当PI和PN不变时,SINR会逐渐增大,如下图所示是SNR和SINR的关系:
在这里插入图片描述

五、干噪比INR和信干噪比SINR的关系

由第四节所述,当干噪比INR增加时,相当于PI增加,因此当PN和PS不变时,SINR会逐渐降低。如下图所示:
在这里插入图片描述
代码下载链接:https://mbd.pub/o/bread/ZZicm5Zy

http://www.lryc.cn/news/270759.html

相关文章:

  • OpenCV-11颜色通道的分离与合并
  • 从0到1入门C++编程——01 C++基础知识
  • C#编程-编写和执行C#程序2
  • Day02-ES6
  • 2023年12月记录内容管理
  • 【测试基础】构造测试数据之 MySQL 篇
  • 基于单片机的语音识别自动避障小车(论文+源码)
  • 2023年“中银杯”四川省职业院校技能大赛“云计算应用”赛项样题卷①
  • 【信息安全原理】——入侵检测与网络欺骗(学习笔记)
  • JVM GC 算法原理概述
  • 【数值分析】LU分解解Ax=b,matlab自己编程实现
  • 华为HCIE-Datacom课程介绍
  • QT(C++)-QTableWight添加行和删除空行
  • 软件测试/测试开发丨Python 面向对象编程思想
  • 一次降低进程IO延迟的性能优化实践——基于block层bfq调度器
  • C语言易错知识点十(指针(the final))
  • React 18 新增的钩子函数
  • 安装与部署Hadoop
  • MySQL 8.0 InnoDB Tablespaces之General Tablespaces(通用表空间/一般表空间)
  • 循环生成对抗网络(CycleGAN)
  • 数组--53.最大子数组和/medium
  • centos 编译安装 python 和 openssl
  • 【nodejs】前后端身份认证
  • 数据结构【线性表篇】(三)
  • Python装饰器的专业解释
  • vue3框架笔记
  • pytest --collectonly 收集测试案例
  • dev express 15.2图表绘制性能问题(dotnet绘图表)
  • WorkPlus:领先的IM即时通讯软件,打造高效沟通协作新时代
  • 学习SpringCloud微服务