当前位置: 首页 > news >正文

三角函数两角和差公式推导

一.几何推理

1.两角和公式

在这里插入图片描述

做一斜边为1的直角△ABC,任意旋转非 k Π , k = N kΠ,k=N kΠ,k=N,补充如图,令 ∠ A B C = ∠ α , ∠ C B F = ∠ β ∠ABC=∠α,∠CBF=∠β ABC=αCBF=β
∴ ∠ D B F = ∠ D B A + ∠ α + ∠ β = 90 ° , ∠ D A F = ∠ D B A + ∠ D A B ∴∠DBF=∠DBA+∠α+∠β=90°,∠DAF=∠DBA+∠DAB DBF=DBA+α+β=90°,DAF=DBA+DAB
∵ ∠ D A B = ∠ α + ∠ β ∵∠DAB=∠α+∠β DAB=α+β
∴ ∠ A C F + ∠ B C F = 90 ° ∴∠ACF+∠BCF=90° ACF+BCF=90°
∵ ∠ A C F = ∠ β ∵∠ACF=∠β ACF=β
∴ A B 长度为 1 ∴AB长度为1 AB长度为1
∵ A C = s i n ( α ) , B C = c o s ( α ) ∵AC=sin(α),BC=cos(α) AC=sin(α),BC=cos(α)
∵ B F = c o s ( α ) ∗ c o s ( β ) , C F = c o s ( α ) ∗ s i n ( β ) , A E = s i n ( α ) s i n ( β ) , C E = s i n ( α ) c o s ( β ) , B D = E F = s i n ( α + β ) , D A = c o s ( α + β ) ∵BF=cos(α)*cos(β),CF=cos(α)*sin(β),AE=sin(α)sin(β),CE=sin(α)cos(β),BD=EF=sin(α+β),DA=cos(α+β) BF=cos(α)cos(β),CF=cos(α)sin(β),AE=sin(α)sin(β),CE=sin(α)cos(β),BD=EF=sin(α+β),DA=cos(α+β)
∵ { c o s ( α + β ) = c o s ( α ) ∗ c o s ( β ) − s i n ( α ) ∗ s i n ( β ) s i n ( α + β ) = s i n ( α ) ∗ c o s ( β ) + c o s ( α ) ∗ s i n ( β ) ∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \end{cases} {cos(α+β)=cos(α)cos(β)sin(α)sin(β)sin(α+β)=sin(α)cos(β)+cos(α)sin(β)

2.两角差公式

∵ { c o s ( α + β ) = c o s ( α ) ∗ c o s ( β ) − s i n ( α ) ∗ s i n ( β ) s i n ( α + β ) = s i n ( α ) ∗ c o s ( β ) + c o s ( α ) ∗ s i n ( β ) ∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \end{cases} {cos(α+β)=cos(α)cos(β)sin(α)sin(β)sin(α+β)=sin(α)cos(β)+cos(α)sin(β)
对 ∠ β 做取反变化 对∠β做取反变化 β做取反变化
∵ { c o s ( α + ( − β ) ) = c o s ( α ) ∗ c o s ( β ) − s i n ( α ) ∗ ( − s i n ( β ) ) s i n ( α + ( − β ) ) = s i n ( α ) ∗ c o s ( β ) + c o s ( α ) ∗ ( − s i n ( β ) ) ∵\begin{cases} cos(α+(-β))=cos(α)*cos(β)-sin(α)*(-sin(β)) \\sin(α+(-β))=sin(α)*cos(β)+cos(α)*(-sin(β)) \end{cases} {cos(α+(β))=cos(α)cos(β)sin(α)(sin(β))sin(α+(β))=sin(α)cos(β)+cos(α)(sin(β))

∵ { c o s ( α − β ) = s i n ( α ) ∗ s i n ( β ) + c o s ( α ) ∗ s i n ( β ) s i n ( α − β ) = s i n ( α ) ∗ c o s ( β ) − c o s ( α ) ∗ s i n ( β ) ∵\begin{cases} cos(α-β)=sin(α)*sin(β)+cos(α)*sin(β) \\sin(α-β)=sin(α)*cos(β)-cos(α)*sin(β) \end{cases} {cos(αβ)=sin(α)sin(β)+cos(α)sin(β)sin(αβ)=sin(α)cos(β)cos(α)sin(β)

3.总结

∵ { c o s ( α + β ) = c o s ( α ) ∗ c o s ( β ) − s i n ( α ) ∗ s i n ( β ) s i n ( α + β ) = s i n ( α ) ∗ c o s ( β ) + c o s ( α ) ∗ s i n ( β ) c o s ( α − β ) = s i n ( α ) ∗ s i n ( β ) + c o s ( α ) ∗ s i n ( β ) s i n ( α − β ) = s i n ( α ) ∗ c o s ( β ) − c o s ( α ) ∗ s i n ( β ) ∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \\cos(α-β)=sin(α)*sin(β)+cos(α)*sin(β) \\sin(α-β)=sin(α)*cos(β)-cos(α)*sin(β) \end{cases} cos(α+β)=cos(α)cos(β)sin(α)sin(β)sin(α+β)=sin(α)cos(β)+cos(α)sin(β)cos(αβ)=sin(α)sin(β)+cos(α)sin(β)sin(αβ)=sin(α)cos(β)cos(α)sin(β)

4.其他

为什么几何推理∠β和∠α不是钝角,根据诱导公式可将钝角化为锐角。所以只推导锐角和可以等价于推导任意角和

http://www.lryc.cn/news/270359.html

相关文章:

  • HarmonyOS page生命周期函数讲解
  • 3D视觉-结构光测量-线结构光测量
  • ssm基于web的马病管理系统设计与实现+jsp论文
  • SaaS版Java基层健康卫生云HIS信息管理平台源码(springboot)
  • redis,memcached,nginx网络组件,网络编程——reactor的应用
  • 【机电、机器人方向会议征稿|不限专业|见刊快】2024年机械、 图像与机器人国际会议(IACMIR 2024)
  • uniapp学习之路
  • 移动开发新的风口?Harmony4.0鸿蒙应用开发基础+实践案例
  • QT上位机开发(倒计时软件)
  • 2023 楚慧杯 --- Crypto wp
  • Python+OpenCV 零基础学习笔记(1-3):anaconda+vscode+jupyter环境配置
  • Spring Cloud Gateway 常见过滤器的基本使用
  • maven依赖无法传递问题排查
  • JVM钩子
  • linux cat命令增加-f显示文件名功能
  • linux更改登录shell
  • 【JS】报错:Uncaught TypeError: Cannot read properties of null (reading ‘classList‘)
  • kali2.0安装VMware Tools 和自定义改变分辨率
  • redis中根据通配符删除key
  • 【HDFS联邦(2)】HDFS Router-based Federation官网解读:HDFSRouterFederation的架构、各组件基本原理
  • 【头歌实训】Spark 完全分布式的安装和部署
  • Leetcode—86.分隔链表【中等】
  • 淘宝/天猫商品API:实时数据获取与安全隐私保护的指南
  • 使用 SSH 方式实现 Git 远程连接GitHub
  • Centos7部署Keepalived+lvs服务
  • 12/31
  • python使用openpyxl为excel模版填充数据,生成多个Sheet页面
  • 基于ssm的4S店预约保养系统开发+vue论文
  • 【Git】Git的基本操作
  • 【超图】SuperMap iClient3D for WebGL/WebGPU —— 数据集合并缓存如何控制对象样式