当前位置: 首页 > news >正文

EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

目录

    • EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

基本介绍

1.【EI级】 Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
2.运行环境为Matlab2023a及以上;
3.data为数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

模型描述

TCN-BiGRU-Multihead-Attention是一种用于多变量时间序列预测的深度学习模型。该模型结合了Temporal Convolutional Network (TCN)、Bidirectional Gated Recurrent Unit (BiGRU)和Multihead Attention三个组件,以提高模型对时间序列数据的建模能力和预测准确性。

输入层:模型接收多个变量的时间序列作为输入。每个变量的时间序列可以具有不同的特征。

Temporal Convolutional Network (TCN):TCN是一种卷积神经网络结构,用于捕捉时间序列数据中的局部和全局模式。TCN中的卷积层可以跨越不同时间步,从而捕捉长期依赖性。TCN通过多个卷积层和残差连接来构建深度模型,并提供更好的特征提取能力。

Bidirectional Gated Recurrent Unit (BiGRU):BiGRU是一种循环神经网络结构,通过正向和反向两个方向进行时间序列的建模。正向和反向的GRU单元分别记忆和传递时间序列的过去和未来信息,从而更好地捕捉序列中的上下文关系。

Multihead Attention:多头注意力机制用于模型对时间序列数据的重要特征进行自适应加权。它通过将输入序列进行多次映射,每次映射产生一个注意力头。每个注意力头关注不同的时间序列特征,然后将它们的加权表示进行融合,以获得更全面的特征表示。

输出层:最后,模型使用全连接层将多头注意力的输出进行整合,并生成最终的预测结果。预测结果可以是单个时间步的值或者是未来多个时间步的序列。

训练过程中,模型通过最小化预测值与真实标签之间的误差来进行优化,并使用反向传播算法更新模型的参数。为了避免过拟合,可以使用正则化技术如Dropout或L2正则化,并进行交叉验证和早停等操作。

TCN-BiGRU-Multihead-Attention模型通过结合TCN、BiGRU和多头注意力机制,可以更好地建模多变量时间序列数据,并提高时间序列预测的准确性。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测获取。
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  相关指标计算
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  MAPE
maep1 = sum(abs(T_sim1 - T_train)./T_train) ./ M ;
maep2 = sum(abs(T_sim2 - T_test )./T_test) ./ N ;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的MAPE为:', num2str(maep1)])
disp(['测试集数据的MAPE为:', num2str(maep2)])
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  RMSE
RMSE1 = sqrt(sumsqr(T_sim1 - T_train)/M);
RMSE2 = sqrt(sumsqr(T_sim2 - T_test)/N);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的RMSE为:', num2str(RMSE1)])
disp(['测试集数据的RMSE为:', num2str(RMSE2)])

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

http://www.lryc.cn/news/270231.html

相关文章:

  • WeNet语音识别分词制作词云图
  • Proxyman:现代本地Web调试代理工具
  • k8s中DaemonSet实战详解
  • 信号处理设计模式
  • Linux权限的基本理解
  • AI人工智能大模型讲师叶梓《基于人工智能的内容生成(AIGC)理论与实践》培训提纲
  • nat地址转换
  • 第12课 循环综合举例
  • Tuxera NTFS for Mac2024免费Mac读写软件下载教程
  • C++ 具名要求
  • 大创项目推荐 深度学习二维码识别
  • C++初阶——基础知识(函数重载与引用)
  • 车载电子电器架构 —— 电子电气系统开发角色定义
  • 最新Redis7哨兵模式(保姆级教学)
  • Redis原理及常见问题
  • nvm 的安装及使用 (Node版本管理器)
  • 【Yii2】数据库查询方法总结
  • 区块链的三难困境是什么,如何解决?
  • oCPC实践录 | oCPM的秘密
  • 【Linux Shell学习笔记】Linux Shell的位置参数与函数
  • 缓存cache和缓冲buffer的区别
  • Vue常见面试问答
  • Eureka相关面试题及答案
  • 想要学会JVM调优,先掌握JVM内存模型和JVM运行原理
  • 详解C语言入门程序:HelloWorld.c
  • 【elk-day01】es和kibana搭建及验证---Mac-Docker
  • 探索 3D 图形处理的奥秘
  • R语言孟德尔随机化研究工具包(1)---friendly2MR
  • CentOS7下使用Docker安装Nacos
  • 用 Node.js 写一个爬虫