当前位置: 首页 > news >正文

MR实战:统计总分与平均分

文章目录

  • 一、实战概述
  • 二、提出任务
  • 三、完成任务
    • (一)准备数据
      • 1、在虚拟机上创建文本文件
      • 2、上传文件到HDFS指定目录
    • (二)实现步骤
      • 1、创建Maven项目
      • 2、添加相关依赖
      • 3、创建日志属性文件
      • 4、创建成绩映射器类
      • 5、创建成绩驱动器类
      • 6、启动应用,查看结果
      • 7、创建成绩归并器类
      • 8、修改成绩驱动器类
      • 9、启动应用,查看结果

一、实战概述

  • 在本次实战中,我们将利用Apache Hadoop的MapReduce框架来计算一个包含五名学生五门科目成绩的数据集的总分和平均分。我们将通过以下步骤实现这一目标:首先,在虚拟机上创建并准备数据,将成绩表以文本文件形式存储并在HDFS上设定输入目录;然后,使用IntelliJ IDEA创建Maven项目,并添加必要的Hadoop和JUnit依赖;接着,我们将实现ScoreMapper和ScoreReducer类,分别负责处理输入数据和计算总分与平均分;在ScoreDriver类中,我们将配置作业并运行MapReduce任务。最后,我们将通过HDFS Shell命令查看结果文件内容。此实战旨在深入理解并掌握MapReduce在处理和分析学生成绩数据中的应用,展现其强大的分布式计算能力。

二、提出任务

  • 成绩表,包含六个字段(姓名、语文、数学、英语、物理、化学),有五条记录
姓名语文数学英语物理化学
李小双8978949687
王丽霞9480867880
吴雨涵9067959260
张晓红8776907959
陈燕文9795928886
  • 利用MR框架,计算每个同学的总分与平均分
    在这里插入图片描述

三、完成任务

(一)准备数据

1、在虚拟机上创建文本文件

  • 在master虚拟机上创建score.txt文件
    在这里插入图片描述

2、上传文件到HDFS指定目录

  • 创建/calcscore/input目录,执行命令:hdfs dfs -mkdir -p /calcscore/input
    在这里插入图片描述

  • 将文本文件score.txt上传到HDFS的/calcscore/input目录
    在这里插入图片描述

(二)实现步骤

  • 说明:集成开发环境IntelliJ IDEA版本 - 2022.3

1、创建Maven项目

  • Maven项目 - MRCalcScore,设置了JDK版本 - 1.8,组标识 - net.huawei.mr
    在这里插入图片描述
  • 单击【Create】按钮,得到初始化项目
    在这里插入图片描述

2、添加相关依赖

  • pom.xml文件里添加hadoopjunit依赖
    在这里插入图片描述
<dependencies>                                      <!--hadoop客户端-->                                <dependency>                                    <groupId>org.apache.hadoop</groupId>        <artifactId>hadoop-client</artifactId>      <version>3.3.4</version>                    </dependency>                                   <!--单元测试框架-->                                   <dependency>                                    <groupId>junit</groupId>                    <artifactId>junit</artifactId>              <version>4.13.2</version>                   </dependency>                                   
</dependencies>                                     
  • 刷新项目依赖
    在这里插入图片描述

3、创建日志属性文件

  • resources目录里创建log4j.properties文件
    在这里插入图片描述
log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/calcscore.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

4、创建成绩映射器类

  • 创建net.huawei.mr包,在包里创建ScoreMapper
    在这里插入图片描述
package net.huawei.mr;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;/*** 功能:成绩映射器* 作者:华卫* 日期:2023年12月29日*/
public class ScoreMapper extends Mapper<LongWritable, Text, Text, IntWritable> {@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {// 获取行数据String line = value.toString();// 按空格拆分,得到字段数组String[] fields = line.split(" ");// 获取姓名String name = fields[0];// 遍历各科成绩for (int i = 1; i < fields.length; i++) {// 获取成绩int score = Integer.parseInt(fields[i]);// 将<姓名,成绩>键值对写入中间结果context.write(new Text(name), new IntWritable(score));        }}
}
  • 说明:该Java类ScoreMapper继承自Hadoop MapReduce的Mapper,用于处理文本格式学生成绩数据。在map方法中,它首先读取一行输入数据并按空格拆分成字段数组,其中姓名为第一个字段。然后遍历剩余字段(各科成绩),将每门课程的成绩与姓名组合成<姓名, 成绩>键值对,并通过context.write写入到中间结果中。

5、创建成绩驱动器类

  • net.huawei.mr包里创建ScoreDriver
    在这里插入图片描述
package net.huawei.mr;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.net.URI;/*** 功能:成绩驱动器类* 作者:华卫* 日期:2023年12月29日*/
public class ScoreDriver {public static void main(String[] args) throws Exception {// 创建配置对象Configuration conf = new Configuration();// 设置客户端使用数据节点主机名属性conf.set("dfs.client.use.datanode.hostname", "true");// 获取作业实例Job job = Job.getInstance(conf);// 设置作业启动类job.setJarByClass(ScoreDriver.class);// 设置Mapper类job.setMapperClass(ScoreMapper.class);// 设置map任务输出键类型job.setMapOutputKeyClass(Text.class);// 设置map任务输出值类型job.setMapOutputValueClass(IntWritable.class);        // 定义uri字符串String uri = "hdfs://master:9000";// 创建输入目录Path inputPath = new Path(uri + "/calcscore/input");// 创建输出目录Path outputPath = new Path(uri + "/calcscore/output");// 获取文件系统FileSystem fs = FileSystem.get(new URI(uri), conf);// 删除输出目录(第二个参数设置是否递归)fs.delete(outputPath, true);// 给作业添加输入目录(允许多个)FileInputFormat.addInputPath(job, inputPath);// 给作业设置输出目录(只能一个)FileOutputFormat.setOutputPath(job, outputPath);// 等待作业完成job.waitForCompletion(true);// 输出统计结果System.out.println("======统计结果======");FileStatus[] fileStatuses = fs.listStatus(outputPath);for (int i = 1; i < fileStatuses.length; i++) {// 输出结果文件路径System.out.println(fileStatuses[i].getPath());// 获取文件系统数据字节输入流FSDataInputStream in = fs.open(fileStatuses[i].getPath());// 将结果文件显示在控制台IOUtils.copyBytes(in, System.out, 4096, false);}}
}
  • 说明:该Java类ScoreDriver是Hadoop MapReduce作业的主驱动类,用于启动和监控整个计算流程。首先,它配置作业属性、设置Mapper类、输入输出格式及路径,并从HDFS读取数据。作业完成后,它遍历输出目录下的结果文件,逐个打开并打印至控制台,实现成绩统计任务的执行与结果显示。

6、启动应用,查看结果

  • 运行ScoreDriver类,会看到两列,一列姓名,一列成绩
    在这里插入图片描述

7、创建成绩归并器类

  • net.huawei.mr包里创建ScoreReducer
    在这里插入图片描述
package net.huawei.mr;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;
import java.text.DecimalFormat;/*** 功能:成绩归并器类* 作者:华卫* 日期:2023年12月29日*/
public class ScoreReducer extends Reducer<Text, IntWritable, Text, NullWritable> {@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Context context)throws IOException, InterruptedException {// 声明科目数、总分和平均分变量int count = 0;int sum = 0;double avg = 0;// 遍历迭代器计算总分for (IntWritable value : values) {count++; // 科目数累加sum = sum + value.get(); // 累加每科成绩}// 计算平均分avg = sum * 1.0 / count;// 创建小数点格式对象(保留一位小数)DecimalFormat df = new DecimalFormat("#.#");// 拼接每个学生总分与平均分成绩信息String scoreInfo = "(" + key + "," + new IntWritable(sum) + "," + df.format(avg) + ")";// 写入键值对<scoreInfo,null>context.write(new Text(scoreInfo), NullWritable.get());}
}
  • 说明:该Java类ScoreReducer继承自Hadoop MapReduce的Reducer,用于计算每个学生各科成绩总分与平均分。在reduce方法中,遍历输入的<姓名, 成绩>对,累加科目数和总分,计算平均分,并格式化输出结果(保留一位小数)。最后将拼接好的成绩信息作为键,写入null值的键值对到输出文件。

8、修改成绩驱动器类

  • 设置Reducer类及其输出键值类型
    在这里插入图片描述

9、启动应用,查看结果

  • 运行ScoreDriver 类,看到指定格式的成绩统计
    在这里插入图片描述

  • 利用HDFS Shell命令查看结果文件内容
    在这里插入图片描述

http://www.lryc.cn/news/269117.html

相关文章:

  • Redux与React环境准备、实现counter(及传参)、异步获取数据
  • 网站服务器被入侵,如何排查,该如何预防入侵呢?
  • 应用在网络摄像机领域中的国产音频ADC芯片
  • Unity3D 安装和下载指南及汉化
  • 【SpringCache】SpringCache详解及其使用,Redis控制失效时间
  • MyBatis的基本使用及常见问题
  • [RoarCTF2019] TankGame
  • 相比于其他流处理技术,Flink的优点在哪?
  • react中使用ref属性获取元素,并判断该元素内是否含有子元素
  • idea 如何快速拉取新分支
  • 【经验分享】日常开发中的故障排查经验分享(一)
  • 关于Unity使用图片字体示例
  • 开源大语言模型简记
  • python高级代码
  • 透彻掌握GIT基础使用
  • 二、类与对象(三)
  • CentOS 7 Tomcat服务的安装
  • 文件夹共享功能的配置 以及Windows server2012防火墙的配置
  • 前端使用高德api的AMap.Autocomplete无效,使用AMap.Autocomplete报错
  • 反转链表、链表的中间结点、合并两个有序链表(leetcode 一题多解)
  • 深度学习中的Dropout
  • MySQL 中的 ibdata1 文件过大如何处理?
  • Weblogic反序列化远程命令执行(CVE-2019-2725)
  • 鸿蒙组件数据传递:ui传递、@prop、@link
  • ubuntu 开机自报IP地址(用于无屏幕小车-远程连接)
  • Angular——:host 和::deep
  • 键盘字符(#键)显示错误
  • geemap学习笔记037:分析地理空间数据--坐标格网和渔网
  • Bluetooth Mesh 入门学习干货,参考Nordic资料(更新中)
  • 磁盘管理 :逻辑卷、磁盘配额