当前位置: 首页 > news >正文

Spark 广播/累加

Spark 广播/累加

  • 广播变量
    • 普通变量广播
    • 分布式数据集广播
    • 克制 Shuffle
    • 强制广播
      • 配置项
      • Join Hints
      • broadcast
  • 累加器

Spark 提供了两类共享变量:广播变量(Broadcast variables)/累加器(Accumulators)

广播变量

创建广播变量的方式:

  • 从普通变量创建广播变量 : 由 Driver 分发各 Executors
  • 从分布式数据集创建广播变量 : Driver 拉取各 Executors 分区数并合并, 再分发各Executors

普通变量广播

普通变量分发 :

  • 普通变量在 Driver 端创建 (非分布式数据集),要把普通变量分发给每个 Task
  • 以 Task 粒度分发,当有 n 个 Task,变量就要分发 n 次
  • 在同个 Executor 内部,多个不同的 Task 多次重复缓存同样的内容 , 对内存资源浪费

在这里插入图片描述

广播变量分发:

  • 以 Executors 粒度分发,同个 Executor 的 各 Tasks 互相拷贝。即:变量分发数 = Executors 数

普通变量广播:

val list: List[String] = List("Apache", "Spark")val bc = sc.broadcast(list)

在这里插入图片描述

分布式数据集广播

创建分布式数据集广播:

val userFile: String = "hdfs://ip:port/rootDir/userData"
val df: DataFrame = spark.read.parquet(userFile)val bc_df: Broadcast[DataFrame] = spark.sparkContext.broadcast(df)

分布式数据集广播过程 :

  • Driver 从所有的 Executors 拉取这些数据分区,再在本地构建全量数据
  • Driver 把合并的全量数据分发给各个 Executors
  • Executors 收到数据后,缓存到存储系统的 BlockManager

在这里插入图片描述

克制 Shuffle

无优化时,默认用 Shuffle Join

val transactionsDF: DataFrame = _
val userDF: DataFrame = _transactionsDF.join(userDF, Seq("userID"), "inner")

Shuffle Join 的过程 :

  1. 对关联俩表分别进行 Shuffle
  2. Shuffle 的分区规则:先对 Join keys 计算哈希值,再对哈希值进行分区数取模
  3. Shuffle 后,同 key 的数据会在同个 Executors
  4. Reduce Task 对 同 key 的数据进行关联

在这里插入图片描述

优化代码:

import org.apache.spark.sql.functions.broadcastval transactionsDF: DataFrame = _
val userDF: DataFrame = _val bcUserDF = broadcast(userDF)
transactionsDF.join(bcUserDF, Seq("userID"), "inner")

广播过程:

  1. Driver 从所有 Executors 收集 userDF 的所有数据分片,再在本地汇总数据
  2. 给每个 Executors 都发送一份全量数据,各自在本地关联
  3. 利用广播变量 ,就能避免 Shuffle

在这里插入图片描述

强制广播

广播注意点:

  • 创建广播变量越大,网络开销和 Driver 内存也就越大。当广播变量大小 > 8GB,就会直接报错
  • Broadcast Joins 不支持全连接(Full Outer Joins)
  • 左连接(Left Outer Join)时,只能广播右表
  • 右连接(Right Outer Join)时,只能广播左表

配置项

两张 Join 表,只要其中一张表的尺寸 < 10MB,就会采用 Broadcast Joins 做数据关联

# 采用 Broadcast Join 实现的最低阈值
spark.sql.autoBroadcastJoinThreshold 10m

数据在存储/内存大小差异的原因:

  • 为了存储/访问效率,数据采用 Parquet/ORC 格式进行落盘
  • JVM 一般需要比数据原始更大的内存空间来存储对象

准确预估表在内存的大小:

  1. 把表缓存到内存,如: DataFrame/Dataset.cache
  2. 读取执行计划的统计数据
val df: DataFrame = _
df.cache.countval plan = df.queryExecution.logical
val estimated: BigInt = spark.sessionState.executePlan(plan).optimizedPlan.stats.sizeInBytes

Join Hints

Join Hints :在开发中用特殊的语法,告知 Spark SQL 运行时采用这种 Join

val table1: DataFrame = spark.read.parquet(path1)
val table2: DataFrame = spark.read.parquet(path2)table1.createOrReplaceTempView("t1")
table2.createOrReplaceTempView("t2")val query: String = "select /*+ broadcast(t2) */ * from t1 inner join t2 on t1.id = t2.id"val queryResutls: DataFrame = spark.sql(query)

DataFrame 的 DSL 语法中使用 Join Hints :

table1.join(table2.hint("b"roadcast"), Seq("key"), "inner")

broadcast

广播数据表 :

import org.apache.spark.sql.functions.broadcasttable1.join(broadcast(table2), Seq(“key”), “inner”)

广播设置要点:以广播阈值配置为主,以强制广播为辅

累加器

累加器的作用:全局计数(Global counter)
SparkContext 提供了 3 种累加器 :

  • longAccumulator:Long 类型的累加器
  • doubleAccumulator :对 Double 类型的数值做全局计数
  • collectionAccumulator :定义集合类型的累加器

累加器在 Driver 端定义,在 RDD 算子中调用 add 进行累加。最后在 Driver 端调用 value ,就能获取全局计数结果

// 定义 Long 类型的累加器
val ac = sc.longAccumulator("Empty string")def f(x: String): Boolean = {if(x.equals("")) {// 当遇到空字符串时,累加器加 1ac.add(1)return false} else {return true}
} //用 f 对 RDD 进行过滤
val cleanWordRDD: RDD[String] = wordRDD.filter(f)// 作业执行完毕,通过调用 value 获取累加器结果
ac.value
http://www.lryc.cn/news/26888.html

相关文章:

  • 飞天云动,站在下一个商业时代的门口
  • 上海分时电价机制调整对储能项目的影响分析
  • 产品新人如何快速上手工作
  • Linux: ARM GIC仅中断CPU 0问题分析
  • 第20篇:Java运算符全面总结(系列二)
  • OpenCV4.x图像处理实例-OpenCV两小时快速入门(基于Python)
  • 【Git】Mac忽略.DS_Store文件
  • 12.2 基于Django的服务器信息查看应用(CPU信息)
  • 【软件测试】接口测试总结
  • 代码随想录算法训练营第52天 || 300.最长递增子序列 || 674. 最长连续递增序列 || 718. 最长重复子数组
  • gitblit 安装使用
  • 使用 TensorFlow、Keras-OCR 和 OpenCV 从技术图纸中获取信息
  • ESP32设备驱动-GUVA-S12SD紫外线检测传感器驱动
  • WIN7下 program file 权限不足?咋整?!!
  • 119.(leaflet篇)文字碰撞
  • cuda编程以及GPU基本知识
  • Python 机器学习/深度学习/算法专栏 - 导读目录
  • Springboot怎么实现restfult风格Api接口
  • Jetpack Compose 深入探索系列六:Compose runtime 高级用例
  • 23.3.2 Codeforces Round #834 (Div. 3) A~E
  • 一次失败的面试经历:我只想找个工作,你却用面试题羞辱我!
  • java版工程管理系统 Spring Cloud+Spring Boot+Mybatis实现工程管理系统源码
  • 附录3-大事件项目后端-项目准备工作,config.js,一些库的简易用法,main.js
  • 并发编程-线程
  • 图解LeetCode——剑指 Offer 34. 二叉树中和为某一值的路径
  • 使用Python免费试用最新Openai API
  • 04、启动 SVN 服务器端程序
  • jsp船舶引航计费网站Myeclipse开发mysql数据库web结构java编程计算机网页项目
  • Allegro如何画半圆形的线操作指导
  • 【强烈建议收藏:MySQL面试必问系列之SQL语句执行专题】