当前位置: 首页 > news >正文

机器学习——决策树(三)

【说明】文章内容来自《机器学习——基于sklearn》,用于学习记录。若有争议联系删除。

1、案例一

决策树用于是否赖床问题。

采用决策树进行分类,要经过数据采集、特征向量化、模型训练和决策树可视化4个步骤。

赖床数据链接:https://pan.baidu.com/s/1mi7Is8YyGVbtrkxnHytlVA 
提取码:cndl

import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn import tree
from sklearn.model_selection import train_test_split#pandas读取CSV文件,header= None,表示不将首行作为列标签
data = pd.read_csv('laichuang.csv', header = None)#指定列
data.columns = ['season', 'after 8:00', 'wind', 'lay bed']
vec = DictVectorizer(sparse = False)#对字典进行向量化,FALSE表示不产生稀疏矩阵
feature = data[['season', 'after 8:00', 'wind']]
x_train = vec.fit_transform(feature.to_dict('records'))
#打印各个变量
print('show feature\n', feature)
print('show vector\n', x_train)
print('show vector name\n', vec.get_feature_names_out())

【运行结果】

#划分数据集
x_trian, x_test, y_train, y_test = train_test_split(x_train, feature, test_size = 0.3)
#训练决策树
clf = tree.DecisionTreeClassifier(criterion = 'gini')
clf.fit(x_train, feature)
#决策树可视化,保存DOT文件
with open('d:lay.dot', 'w') as f:f = tree.export_graphviz(clf, out_file = f, feature_names = vec.get_feature_names_out())

【运行结果】

2、决策树可视化

2.1 Graphviz

        Graphviz是一款来自AT&T Research实验窒和Lucent Bell 实验室的开源的可视化图形工具,可以绘制结构化的图形网络,支持多种格式输出。Graphviz将 Python 代码生成的dot 脚本解析为树状图。
Graphviz的安装及配置步骤如下:
1:访问网址http://www.graphviz.org/,下载Graphviz 软件安装包graphviz

2:双击该安装包,运行安装程序,将Graphviz安装到C盘,选择添加到环境变量中。



3:使用pip安装 graphviz,命令如下:
pip install graphviz

2.2 DOT

        DOT是一种文本图形描述语言,用于描述图表的组成元素及其关系。DOT 文件通常以.gv或.dot为扩展名。DOT 与 Graphviz的关系可以类比 HTML 和浏览器的关系。打开.cmd窗口,进人out.dot所在目录,此处为D盘根目录,运行dot命令,如图所示。

dot out.dot - T paf -o out.pdf

打开PDF文件显示。

3、案例二

波士顿房价

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
import pandas as pd
import numpy as npdata_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
x = data
y = target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 33)
#特征预处理,对训练数据和测试数据标准化
ss_x = StandardScaler()
x_train = ss_x.fit_transform(x_train)
x_test = ss_x.transform(x_test)
ss_y = StandardScaler()
y_train = ss_y.fit_transform(y_train.reshape(-1,1))
y_test = ss_y.transform(y_test.reshape(-1,1))
#使用回归树进行训练和预测,初始化KNN回归模型,使用平均回归算法进行预测
dtr = DecisionTreeRegressor()
#训练
dtr.fit(x_train, y_train)
#预测,保存预测结果
dtr_y_predict = dtr.predict(x_test)
#模型评估
print('回归树的默认评估值为:', dtr.score(x_test, y_test))
print('回归树的R_squared值为:', r2_score(y_test, dtr_y_predict))
# print('回归树的均方误差为:',mean_squared_error(ss_y.inverse_transform(y_test),
#                                       ss_y.inverse_transform(dtr_y_predict)))
# print('回归树的平均绝对误差为:', mean_absolute_error(ss_y.inverse_transform(y_test),
#                                           ss_y.inverse_transform(dtr_y_predict)))

【运行结果】

http://www.lryc.cn/news/267829.html

相关文章:

  • 模型量化之AWQ和GPTQ
  • 一个简单的 HTTP 请求和响应服务——httpbin
  • 2024黑龙江省职业院校技能大赛暨国赛选拔赛应用软件系统开发赛项(高职组)赛题第3套
  • 云原生Kubernetes系列 | Kubernetes Secret及ConfigMap
  • dev express 15.2图表绘制性能问题
  • 单链表的创建,插入及删除(更新ing)
  • C#/WPF 播放音频文件
  • 如何使用宝塔面板+Discuz+cpolar内网穿透工具搭建可远程访问论坛服务
  • 【HBase】——简介
  • JAVA 有关PDF文件和图片文件合并并生产一个PDF
  • 八股文打卡day10——计算机网络(10)
  • Spring Boot学习:Flyway详解
  • Spark编程实验三:Spark SQL编程
  • 文献研读|Prompt窃取与保护综述
  • cfa一级考生复习经验分享系列(十四)
  • vue本地缓存搜索记录(最多4条)
  • Linux创建Macvlan网络
  • 从企业级负载均衡到云原生,深入解读F5
  • 什么是redis雪崩
  • [足式机器人]Part2 Dr. CAN学习笔记-Ch00 - 数学知识基础
  • Jmeter、postman、python 三大主流技术如何操作数据库?
  • IRIS、Cache系统类汉化
  • 【三维生成】稀疏重建、Image-to-3D方法(汇总)
  • Java基础知识:单元测试和调试技巧
  • [c]扫雷
  • 数据结构-十大排序算法
  • Apache RocketMQ,构建云原生统一消息引擎
  • (四) ClickHouse 中使用 `MaterializedMySQL` 引擎单独同步 MySQL 数据库中的特定表(例如 `aaa` 和 `bbb`)
  • TikTok真题第4天 | 1366. 通过投票对团队排名、1029.两地调度、562.矩阵中最长的连续1线段
  • 时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测