当前位置: 首页 > news >正文

PyTorch加载数据以及Tensorboard的使用

一、PyTorch加载数据初认识

Dataset:提供一种方式去获取数据及其label

如何获取每一个数据及其label
总共有多少的数据

Dataloader:为后面的网络提供不同的数据形式
数据集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在编译器中导入Dataset

from torch.utils.data import Dataset

可以在jupyter中查看Dataset官方文档:

help(Dataset)

在这里插入图片描述
或者

Dataset??

在这里插入图片描述

二、Dataset类代码实战

将数据集复制到项目中,命名为dataset,右键拷贝路径。
在这里插入图片描述
在pycharm中的控制台运行:
在这里插入图片描述
(注意:粘贴完拷贝的路径后需要加上""表示转义字符,共有两个斜杠,否则会报错)
输入img.show()会展示出图片
在这里插入图片描述
获取每个图片的地址,创建图片地址列表:
(获得了文件夹的地址后。将文件夹里的数据〔所有照片的路径地址)存入列表里)
在这里插入图片描述
可以换成拼接图片路径:

import os
root_dir = "learn_pytorch/dataset/train"
label_dir = "ants"
path = os.path.join(root_dir, label_dir)

测试第一张图片

path = os.path.join(root_dir, label_dir)
img_path = os.listdir(path)  # 所有图片地址列表
idx = 0
img_name = img_path[idx]  # 第一张图片
img_item_path = os.path.join(root_dir, label_dir, img_name)  # 第一张图片地址

在这里插入图片描述
read_data.py

from torch.utils.data import Dataset
# import cv2
from PIL import Image
import os # 获取所有图片地址
class MyData(Dataset):def __init__(self, root_dir, label_dir):self.root_dir = root_dirself.label_dir = label_dirself.path = os.path.join(self.root_dir, self.label_dir)self.img_path = os.listdir(self.path)def __getitem__(self, idx):img_name = self.img_path[idx]img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)img = Image.open(img_item_path)label = self.label_dirreturn img, labeldef __len__(self):return len(self.img_path)root_dir = "learn_pytorch/dataset/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
ants_dataset = MyData(root_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_label_dir)train_dataset = ants_dataset + bees_dataset

将上述代码输入到控制台,然后进行测试:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、Tensorboard的使用

在编译器中导入

from torch.utils.tensorboard import SummaryWriter

SummaryWriter类使用

在pycharm中查看说明文档方法:可以直接按住ctrl键,点击类名
在这里插入图片描述
创建实例对象:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
writer.add_image()
writer.add_scalar()
writer.close()

add_scalar()方法的使用

pycharm中ctrl+‘/’可以注释,注释掉writer.add_image()
add_scalar()方法:
在这里插入图片描述
测试:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
# writer.add_image()
# y=x
for i in range(100):writer.add_scalar("y=x", i, i)
writer.close()

报错。没有安装Tensorboard
在这里插入图片描述

安装Tensorboard

在pycharm的Terminal中运行或在anaconda命令行中激活pytorch环境运行

pip install tensorboard

再次测试:
运行后生成了logs文件夹,里面是执行过的事件文件
在这里插入图片描述

打开事件文件

logdir=事件文件所在文件夹名

在Terminal中运行,点击链接即可:

 tensorboard --logdir=logs

在这里插入图片描述
在这里插入图片描述
上面是默认的端口,还可以指定端口:

 tensorboard --logdir=logs --port=6007

add_image()方法的使用

add_scalar()方法:
在这里插入图片描述
image的类型:
在这里插入图片描述
在pycharm工作台获取图片路径

image_path = "learn_pytorch/dataset/train/ants/0013035.jpg"

测试:

from PIL import Image
img = Image.open(image_path)
print(type(img))

在这里插入图片描述
PIL.JpegImagePlugin.JpegImageFile类型不满足要求。
利用numpy.array(),对PIL图片进行转换。
(另一种方法:利用Opencv读取图片,获得numpy型图片数据)

import numpy as np
img_array = np.array(img)
print(type(img_array))

在这里插入图片描述
从PIL到numpy,需要在add_image()中指定shape中每一个数字/维表示的含义,否则会报错。

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Imagewriter = SummaryWriter("logs")
image_path = "learn_pytorch/dataset/train/ants/0013035.jpg"
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)writer.add_image("test", img_array, 1, dataformats='HWC')
# y=2x
for i in range(100):writer.add_scalar("y=2x", 3*i, i)
writer.close()

运行结果:
在这里插入图片描述
点开tensorboard会显示出图片:
在这里插入图片描述
更改图片地址,换一张图片,并改成第二步:
在这里插入图片描述
运行后tensorboard中的图片变成俩个图片滑动变换。
在这里插入图片描述
更改tag,运行后重新生成了一个单张图片:
在这里插入图片描述
在这里插入图片描述

http://www.lryc.cn/news/267327.html

相关文章:

  • TensorFlow是什么
  • docker-compose 安装Sonar并集成gitlab
  • 支付平台在选择服务器租用时要注意什么?
  • IDEA2018升级2023,lombok插件不兼容导致get/set方法无法使用
  • 企业微信服务商代开发模式获取授权企业的客户信息
  • 库存管理方法有哪些
  • 数字化车间推动制造业生产创新
  • Linux的安装及管理程序
  • c语言-表达式求值
  • 小型洗衣机哪个牌子质量好?口碑最好的四款小型洗衣机推荐
  • springCould中的Ribbon-从小白开始【5】
  • 持续集成交付CICD:Jira 发布流水线
  • JuiceSSH结合内网穿透实现公网远程访问本地Linux虚拟机
  • 使用 pytest.ini 文件控制输出 log 日志
  • 【Spring】SpringBoot 配置文件
  • Koordinator 支持 K8s 与 YARN 混部,小红书在离线混部实践分享
  • 网游逆向分析与插件开发-游戏反调试功能的实现-项目需求与需求拆解
  • 阶段七-GitEE
  • Redis小记(1)
  • Flutter windows 环境配置
  • odoo17核心概念view5——ir_ui_view.py
  • 截断整型提升算数转换
  • 阿里云 ECS Docker、Docker Compose安装
  • LeetCode——1276. 不浪费原料的汉堡制作方案
  • 隆道吴树贵:生成式人工智能在招标采购中的应用
  • docker搭建kali及安装oneforall
  • 【MySQL】数据库之事务
  • AGV|RGV小车RFID传感器CNS-RFID-01/1S的RS232通讯联机方法
  • 【Python可视化系列】一文教会你绘制美观的热力图(理论+源码)
  • 百度Apollo五步入门自动驾驶:Dreamview与离线数据包分析(文末赠送apollo周边)