当前位置: 首页 > news >正文

ccc-pytorch-小实验合集(4)

文章目录

      • 一、 Himmelblau 优化
      • 二、多分类实战-Mnist
      • 三、Sequential与CPU加速-Mnist
      • 四、visidom可视化

一、 Himmelblau 优化

Himmelblau 是一个具有4个最优值的2维目标函数。其函数和最优值点如下:
在这里插入图片描述
图象绘制:

import numpy as np
from matplotlib import pyplot as pltdef himmelblau(x):return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2x = np.arange(-6, 6, 0.1)
y = np.arange(-6, 6, 0.1)
print('x,y range:', x.shape, y.shape)
X, Y = np.meshgrid(x, y)
print('X,Y maps:', X.shape, Y.shape)
Z = himmelblau([X, Y])fig = plt.figure('himmelblau')
ax = fig.add_subplot(projection='3d')
ax.plot_surface(X, Y, Z)
ax.view_init(60, -30)
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()

在这里插入图片描述
Gradient Descent:

# [1., 0.], [-4, 0.], [4, 0.]
x = torch.tensor([-4., 0.], requires_grad=True)
optimizer = torch.optim.Adam([x], lr=1e-3)
for step in range(20000):pred = himmelblau(x)# 清空各参数的梯度optimizer.zero_grad()pred.backward()# 优化器更新参数x'=x-lr*梯度optimizer.step()if step % 2000 == 0:print ('step {}: x = {}, f(x) = {}'.format(step, x.tolist(), pred.item()))

在这里插入图片描述
给予x不同的初始化位置可以得到不同的收敛结果和次数。说明初始位置的选择对于收敛的过程和结果非常重要。

二、多分类实战-Mnist

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transformsbatch_size=200
learning_rate=0.01
epochs=10train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True,transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)#Network Architecture
w1, b1 = torch.randn(200, 784, requires_grad=True),\torch.zeros(200, requires_grad=True)
w2, b2 = torch.randn(200, 200, requires_grad=True),\torch.zeros(200, requires_grad=True)
w3, b3 = torch.randn(10, 200, requires_grad=True),\torch.zeros(10, requires_grad=True)
#kaiming初始化
torch.nn.init.kaiming_normal_(w1)
torch.nn.init.kaiming_normal_(w2)
torch.nn.init.kaiming_normal_(w3)def forward(x):x = x@w1.t() + b1x = F.relu(x)x = x@w2.t() + b2x = F.relu(x)x = x@w3.t() + b3x = F.relu(x)return xoptimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate)
# cross-entropy 等同于 softmax + log + nll_loss三个和
criteon = nn.CrossEntropyLoss()for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 28*28)logits = forward(data)loss = criteon(logits, target)optimizer.zero_grad()loss.backward()optimizer.step()if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))test_loss = 0correct = 0for data, target in test_loader:data = data.view(-1, 28 * 28)logits = forward(data)test_loss += criteon(logits, target).item()pred = logits.data.max(1)[1]correct += pred.eq(target.data).sum()test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))

image-20230302210959169
注意事项:

  • Batch_Size太小导致收敛过慢,太大导致易陷入sharp minima,泛化性不好
  • 注意初始化这个关键步骤

三、Sequential与CPU加速-Mnist

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transformsbatch_size=200
learning_rate=0.01
epochs=10train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True,transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.model = nn.Sequential(nn.Linear(784, 200),nn.LeakyReLU(inplace=True),nn.Linear(200, 200),nn.LeakyReLU(inplace=True),nn.Linear(200, 10),nn.LeakyReLU(inplace=True),)def forward(self, x):x = self.model(x)return xdevice = torch.device('cuda:0')
net = MLP().to(device)
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 28*28)data, target = data.to(device), target.cuda()logits = net(data)loss = criteon(logits, target)optimizer.zero_grad()loss.backward()optimizer.step()if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))test_loss = 0correct = 0for data, target in test_loader:data = data.view(-1, 28 * 28)data, target = data.to(device), target.cuda()logits = net(data)test_loss += criteon(logits, target).item()pred = logits.argmax(dim=1)correct += pred.eq(target).float().sum().item()test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))

image-20230302212502896
注意事项:

  • MLP Class中对继承自父类的属性进行初始化,而且是用父类的初始化方法来初始化继承的属性。
  • Sequential 本质是一个可以添加组件的模块,输入通过组成的流水线后得到输出
  • 对于单卡计算机而言,使用torch.device(‘cuda’) 与 torch.device(‘cuda:0’)相同

四、visidom可视化

import  torch
import  torch.nn as nn
import  torch.optim as optim
from    torchvision import datasets, transforms
from visdom import Visdombatch_size=200
learning_rate=0.01
epochs=10train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True,transform=transforms.Compose([transforms.ToTensor(),# transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(),# transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.model = nn.Sequential(nn.Linear(784, 200),nn.LeakyReLU(inplace=True),nn.Linear(200, 200),nn.LeakyReLU(inplace=True),nn.Linear(200, 10),nn.LeakyReLU(inplace=True),)def forward(self, x):x = self.model(x)return xdevice = torch.device('cuda:0')
net = MLP().to(device)
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)viz = Visdom()viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',legend=['loss', 'acc.']))
global_step = 0for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 28*28)data, target = data.to(device), target.cuda()logits = net(data)loss = criteon(logits, target)optimizer.zero_grad()loss.backward()optimizer.step()global_step += 1viz.line([loss.item()], [global_step], win='train_loss', update='append')if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))test_loss = 0correct = 0for data, target in test_loader:data = data.view(-1, 28 * 28)data, target = data.to(device), target.cuda()logits = net(data)test_loss += criteon(logits, target).item()pred = logits.argmax(dim=1)correct += pred.eq(target).float().sum().item()viz.line([[test_loss, correct / len(test_loader.dataset)]],[global_step], win='test', update='append')viz.images(data.view(-1, 1, 28, 28), win='x')viz.text(str(pred.detach().cpu().numpy()), win='pred',opts=dict(title='pred'))test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))

在这里插入图片描述

http://www.lryc.cn/news/26619.html

相关文章:

  • webrtc音频系列——4、RTP与RTCP协议
  • C++枚举解读(enum)
  • OSCP-课外5(Web图片泄露服务信息、日志中毒)
  • 汇编指令学习(ADD,SUB,MUL,DIV,XADD,INC,DEC,NEG)
  • 【电源专题】案例:充电芯片损坏为什么判断是从NTC进入的EOS
  • C语言中的数据储存规则
  • Android kotlin实战之协程suspend详解与使用
  • Pycharm中的Virtualenv Environment、Conda Environment
  • C++容器介绍:vector
  • 抗锯齿和走样(笔记)
  • 线程池的使用——线程池的创建方式
  • 代码随想录算法训练营day47 |动态规划 198打家劫舍 213打家劫舍II 337打家劫舍III
  • 项目设计模式和规范
  • 无线WiFi安全渗透与攻防(一)之无线安全环境搭建
  • 【matplotlib】可视化解决方案——如何解决matplotlib中文乱码问题
  • JAVA开发中GC日志打印简单通用的配置详解
  • 十进制的小数如何转二进制?二进制表示的小数如何转十进制?
  • klipper使用webcam设置多个摄像头方式
  • 风力发电机组浪涌保护器安全防护方案
  • 【剑指offer】JZ7 重建二叉树、JZ9 用两个栈实现队列
  • ElasticSearch - SpringBoot整合ES之查询所有 match_all
  • 详谈IIC
  • 【Autoware】采集实验数据bag包并仿真运行
  • 名创优品怎么把创意做成生意?
  • springboot原项目配置文件迁移至nacos
  • 常用的shell脚步操作
  • Java on VS Code 2月更新|JUnit 5 并行测试与 Spring Boot 插件的过滤功能
  • 无线WiFi安全渗透与攻防(三)之Windows扫描wifi和破解WiFi密码
  • Python中的遍历字典的键和值
  • 三天Golang快速入门—结构体