当前位置: 首页 > news >正文

08- 数据升维 (PolynomialFeatures) (机器学习)

  • 在做数据升维的时候,最常见的手段就是将已知维度进行相乘(或者自乘)来构建新的维度
    • 使用 np.concatenate()进行简单的,幂次合并,注意数据合并的方向axis = 1

    • 数据可视化时,注意切片,因为数据升维后,多了平方这一维

# 4、多项式升维 + 普通线性回归
X = np.concatenate([X,X**2],axis = 1)
  • 使用 PolynomialFeatures 进行 特征升维
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures()   # 使用PolynomialFeatures进行特征升维
poly.fit(X,y)
X = poly.transform(X)
  • 调整字体大小: plt.rcParams[ 'font.size' ] = 18
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 18


1.1、多项式回归基本概念

对于多项式回归来说主要是为了扩展线性回归算法来适应更广泛的数据集,比如我们数据集有两个维度 x_1, x_2​,那么用多元线性回归公式就是: \hat{y} = w_0 + w_1x_1 + w_2x_2,当我们使用二阶多项式升维的时候,数据集就从原来的 x_1, x_2 扩展成了 x_1, x_2, x_1^2, x_2^2, x_1x_2 。因此多元线性回归就得去多计算三个维度所对应的w值:\hat{y} = w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_2^2 + w_5x_1x_2

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression# 1、创建数据,并进行可视化
X = np.linspace(-1,11,num = 100)
y = (X - 5)**2 + 3*X -12 + np.random.randn(100)
X = X.reshape(-1,1)
plt.scatter(X,y)# 2、创建预测数据
X_test = np.linspace(-2,12,num = 200).reshape(-1,1)# 3、不进行升维 + 普通线性回归
model_1 = LinearRegression()
model_1.fit(X,y)
y_test_1 = model_1.predict(X_test)
plt.plot(X_test,y_test_1,color = 'red')# 4、多项式升维 + 普通线性回归
X = np.concatenate([X,X**2],axis = 1)
model_2 = LinearRegression()
model_2.fit(X,y)
# 5、测试数据处理,并预测
X_test = np.concatenate([X_test,X_test**2],axis = 1)
y_test_2 = model_2.predict(X_test)# 6、数据可视化,切片操作
plt.plot(X_test[:,0],y_test_2,color = 'green')

1.2 使用PolynomialFeatures进行特征升维

import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import PolynomialFeatures,StandardScaler
from sklearn.linear_model import SGDRegressor# 1、创建数据,并进行可视化
X = np.linspace(-1,11,num = 100)
y = (X - 5)**2 + 3*X -12 + np.random.randn(100)
X = X.reshape(-1,1)
plt.scatter(X,y)# 3、使用PolynomialFeatures进行特征升维
poly = PolynomialFeatures()   # 特征升维
poly.fit(X,y)
X = poly.transform(X)
s = StandardScaler()    # 归一化
X = s.fit_transform(X)# 4、训练模型
model = SGDRegressor(penalty='l2',eta0 = 0.01)
model.fit(X,y)# 2、创建预测数据
X_test = np.linspace(-2,12,num = 200).reshape(-1,1)
X_test = poly.transform(X_test)      # 特征升维
X_test_norm = s.transform(X_test)    # 归一化
y_test = model.predict(X_test_norm)
plt.plot(X_test[:,1],y_test,color = 'green')

1.3 多项式预测

天猫双十一销量与年份的关系是多项式关系!假定,销量和年份之间关系是三次幂关系:

{\color{Red} f(x) = w_1x + w_2x^2 + w_3x^3 + b}

import numpy as np
from sklearn.linear_model import SGDRegressor
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
plt.figure(figsize=(12,9))# 1、创建数据,年份数据2009 ~ 2019
X = np.arange(2009,2020)
y = np.array([0.5,9.36,52,191,350,571,912,1207,1682,2135,2684])# 2、年份数据,均值移除,防止某一个特征列数据天然的数值太大而影响结果
X = X - X.mean()
X = X.reshape(-1,1)# 3、构建多项式特征,3次幂
poly = PolynomialFeatures(degree=3)
X = poly.fit_transform(X)
s = StandardScaler()
X_norm = s.fit_transform(X)# 4、创建模型
model = SGDRegressor(penalty='l2',eta0 = 0.5,max_iter = 5000)
model.fit(X_norm,y)# 5、数据预测
X_test = np.linspace(-5,6,100).reshape(-1,1)
X_test = poly.transform(X_test)
X_test_norm = s.transform(X_test)
y_test = model.predict(X_test_norm)# 6、数据可视化
plt.plot(X_test[:,1],y_test,color = 'green')
plt.bar(X[:,1],y)
plt.bar(6,y_test[-1],color = 'red')
plt.ylim(0,4096)
plt.text(6,y_test[-1] + 100,round(y_test[-1],1),ha = 'center')
_ = plt.xticks(np.arange(-5,7),np.arange(2009,2021))

 

http://www.lryc.cn/news/2654.html

相关文章:

  • 2023备战金三银四,Python自动化软件测试面试宝典合集(二)
  • 笔试题-2023-紫光展锐-数字芯片设计【纯净题目版】
  • WordPress网站日主题Ri主题RiProV2主题开启了验证码登录但是验证码配置不对结果退出登录后进不去管理端了
  • 自动驾驶感知——毫米波雷达
  • 取电芯片全协议都可兼容
  • 自己总结优化代码写法
  • Java体系最强干货分享—挑战40天准备Java面试,最快拿到offer!
  • 云计算|OpenStack|错误记录和解决方案(不定时更新)
  • 项目实战-NewFixedThreadPool线程池
  • 导数与微分总复习——“高等数学”
  • Linux软件安装
  • 【表面缺陷检测】基于YOLOX的PCB表面缺陷检测(全网最详细的YOLOX保姆级教程)
  • 【C#基础】C# 程序基础语法解析
  • 【webpack】webpack 中的插件安装与使用
  • 生物素-磺基-活性酯,Sulfo-NHS Biotin科研用试剂简介;CAS:119616-38-5
  • Debain安装命令
  • 2023-02-10 - 6 聚合
  • Servlet实现表白墙
  • [python入门㊸] - python测试函数
  • 通讯录文件操作化
  • 为什么 Web3 社交将超越其 Web2 同行
  • 当资深程序员深夜去“打劫”会发生什么?——打家劫舍详解
  • linux 线程
  • Windows 安装appium环境
  • 为什么要在电子产品中使用光耦合器?
  • Vue3 如何实现一个函数式右键菜单(ContextMenus)
  • ffmpeg转码转封装小工具开发
  • 重入和线程安全
  • MySQL数据库06——条件查询(WHERE)
  • Lesson 6.5 机器学习调参基础理论与网格搜索