当前位置: 首页 > news >正文

多维时序 | MATLAB实现KOA-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现KOA-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

目录

    • 多维时序 | MATLAB实现KOA-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

4

6
7
8
9

基本介绍

MATLAB实现KOA-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测。基于开普勒优化算法(KOA)、卷积神经网络(CNN)和双向门控循环单元网络(BiGRU)融合注意力机制的多变量时间序列预测。

模型描述

KOA-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

开普勒优化算法(Kepler optimization algorithm,KOA)由Mohamed Abdel-Basset等人于2023年提出的一种基于物理学的元启发式算法,于2023年5月发表在SCI、中科院1区Top顶级期刊《Knowledge-Based Systems》上,它受到开普勒行星运动定律的启发,可以预测行星在任何给定时间的位置和速度。在KOA中,每个行星及其位置都是一个候选解,它在优化过程中随机更新,相对于迄今为止最优解。
多头自注意力机制使得模型能够更灵活地对不同时间步的输入信息进行加权。这有助于模型更加集中地关注对预测目标有更大影响的时间点。​自注意力机制还有助于处理时间序列中长期依赖关系,提高了模型在预测时对输入序列的全局信息的感知。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现KOA-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测获取。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

http://www.lryc.cn/news/264324.html

相关文章:

  • 业务出海如何快速将站点搬迁到AWS云中?
  • ansible剧本playbook
  • .NET 中string类型的字符串内部化机制
  • 公共字段自动填充——后端
  • nginx upstream 6种负载均衡策略介绍
  • 基于Antd4 和React-hooks的项目开发
  • Spring中用到的设计模式
  • 常用网络接口自动化测试框架
  • 【重点】【贪心】55.跳跃游戏
  • 灰度化、二值化、边缘检测、轮廓检测
  • 基于JAVA的高校大学生创业管理系统 开源项目
  • 神经网络学习小记录76——Tensorflow2设置随机种子Seed来保证训练结果唯一
  • ai学习笔记-入门
  • workflow系列教程(5-1)HTTP Server
  • php-使用wangeditor实现富文本(完成图片上传)-npm
  • mysql查看数据库中所有的表的建表语句
  • 【Axure RP9】实现登入效验及实现左侧菜单栏跳转各页面
  • 76. 最小覆盖子串。优化官方题解!
  • 在国产GPU寒武纪MLU上快速上手Pytorch使用指南
  • 重生奇迹MU觉醒战士攻略
  • 美颜技术详解:深入了解视频美颜SDK的工作机制
  • 3D模型格式转换工具如何实现高性能数据转换?请看CAE系统开发实例!
  • 多级缓存:亿级流量的缓存方案
  • C语言——高精度乘法
  • 为什么C语言没有被C++所取代呢?
  • 基于Spring的枚举类+策略模式设计(以实现多种第三方支付功能为例)
  • 基于Linphone android sdk开发Android软话机
  • [论文分享]TimeDRL:多元时间序列的解纠缠表示学习
  • 分享一个好看的vs主题
  • 什么是云呼叫中心?