当前位置: 首页 > news >正文

yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)

在这里插入图片描述

要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:

单目测距算法

  • 单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。
  • 基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。

单目测距代码

单目测距涉及到坐标转换,代码如下:

def convert_2D_to_3D(point2D, R, t, IntrinsicMatrix, K, P, f, principal_point, height):"""例如:像素坐标转世界坐标Args:point2D: 像素坐标点R: 旋转矩阵t: 平移矩阵IntrinsicMatrix:内参矩阵K:径向畸变P:切向畸变f:焦距principal_point:主点height:Z_wReturns:返回世界坐标系点,point3D_no_correct, point3D_yes_correct"""point3D_no_correct = []point3D_yes_correct = []##[(u1,v1),#   (u2,v2)]point2D = (np.array(point2D, dtype='float32'))

在YOLOv5中添加单目测距功能的一种方法是,在训练集上收集带有物体标注和深度信息的数据。然后,可以使用深度学习模型(如卷积神经网络)将输入图像映射到深度图。训练完成后,您可以使用该模型来估计图像中物体的距离。
在这里插入图片描述

差帧算法(Frame Difference Algorithm)

  • 差帧算法是一种基于视频序列的帧间差异来计算物体速度的方法。它基于一个简单的假设:相邻帧之间物体的位置变化越大,物体的速度越快。
  • 差帧算法是一种基于视频序列的帧间差异来计算物体速度的方法。其原理是计算物体在相邻两帧之间的位置差异,然后通过时间间隔来计算物体的速度。

假设物体在第t帧和第(t-1)帧中的位置分别为pt和pt-1,则可以使用欧氏距离或其他相似度度量方法来计算它们之间的距离:

d = ||pt - pt-1||

其中||.||表示欧氏距离。然后,通过时间间隔Δt来计算物体的平均速度v:

v = d / Δt

其中,Δt表示第t帧和第(t-1)帧之间的时间间隔。在实际应用中,可以根据需要对速度进行平滑处理,例如使用移动平均或卡尔曼滤波等方法。

测速代码

以下是一个简单的差帧算法代码示例,用于计算物体在视频序列中的速度:```python
import cv2
import numpy as np# 读取视频文件
cap = cv2.VideoCapture('video.mp4')# 初始化参数
prev_frame = None
prev_position = None
fps = cap.get(cv2.CAP_PROP_FPS)  # 视频帧率
speeds = []  # 存储速度值while cap.isOpened():ret, frame = cap.read()if not ret:breakgray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)if prev_frame is not None:# 计算当前帧和前一帧之间的位置差异flow = cv2.calcOpticalFlowFarneback(prev_frame, gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)# 提取运动向量的x和y分量vx = flow[..., 0]vy = flow[..., 1]# 计算位置差异的欧氏距离distance = np.sqrt(np.square(vx) + np.square(vy))# 计算速度speed = np.mean(distance) * fpsspeeds.append(speed)# 可选:可视化结果flow_vis = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)flow_vis[..., 0] = np.arctan2(vy, vx) * (180 / np.pi / 2)flow_vis[..., 2] = cv2.normalize(distance, None, 0, 255, cv2.NORM_MINMAX)flow_vis = cv2.cvtColor(flow_vis, cv2.COLOR_HSV2BGR)cv2.imshow('Flow Visualization', flow_vis)if cv2.waitKey(1) & 0xFF == ord('q'):breakprev_frame = graycap.release()
cv2.destroyAllWindows()# 打印速度结果
print("速度列表:", speeds)

该代码使用OpenCV库中的`函数来计算相邻帧之间的光流向量,并通过欧氏距离计算位置差异。然后,通过视频的帧率计算速度,并将速度存储在一个列表中。你可以根据自己的需求对速度进行进一步处理或可视化。请注意,这只是一个简单的示例,实际应用中可能需要根据具体情况进行调整和改进。

追踪

而DeepSORT是一种目标跟踪算法,常与YOLOv5结合使用。

DeepSORT(Deep Learning + SORT)是一种基于深度学习和卡尔曼滤波的目标跟踪算法。它通过结合YOLOv5等目标检测器的输出和SORT(Simple Online and Realtime Tracking)算法的轨迹管理,实现对视频中目标的准确跟踪。

DeepSORT的主要特点如下:

  • 多目标跟踪:DeepSORT能够同时跟踪多个目标,并为每个目标生成唯一的ID,以便在不同帧之间进行关联。
  • 深度特征嵌入:DeepSORT使用深度学习模型(如ResNet)提取目标的特征向量,将其用于目标的身份验证和关联。
  • 卡尔曼滤波:DeepSORT使用卡尔曼滤波器来预测目标的位置和速度,并通过将检测和预测结果进行关联,提供平滑的目标轨迹。
  • 数据关联:DeepSORT使用匈牙利算法将当前帧的检测结果与上一帧的跟踪结果进行关联,以最大化目标标识的一致性

通过将YOLOv5和DeepSORT结合使用,可以实现准确的目标检测和连续的目标跟踪,从而在视频监控、自动驾驶、智能机器人等领域提供更加全面和高效的解决方案。这种结合能够在实时场景下处理大量目标,并为每个目标提供连续的轨迹信息,具有广泛的应用前景。

追踪代码

以下是一个简化的卡尔曼滤波算法的代码示例:

import numpy as npclass KalmanFilter:def __init__(self, state_dim, measurement_dim):# 初始化状态转移矩阵self.F = np.eye(state_dim)# 初始化测量矩阵self.H = np.eye(measurement_dim, state_dim)# 初始化状态估计self.x = np.zeros((state_dim, 1))# 初始化状态协方差矩阵self.P = np.eye(state_dim)# 初始化过程噪声协方差矩阵self.Q = np.eye(state_dim)# 初始化测量噪声协方差矩阵self.R = np.eye(measurement_dim)def predict(self):# 预测状态self.x = np.dot(self.F, self.x)# 预测状态协方差self.P = np.dot(np.dot(self.F, self.P), self.F.T) + self.Qdef update(self, z):# 计算预测残差y = z - np.dot(self.H, self.x)# 计算预测残差协方差S = np.dot(np.dot(self.H, self.P), self.H.T) + self.R# 计算卡尔曼增益K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S))# 更新状态估计self.x = self.x + np.dot(K, y)# 更新状态协方差self.P = np.dot((np.eye(self.x.shape[0]) - np.dot(K, self.H)), self.P)# 示例用法
# 创建卡尔曼滤波器对象
kalman_filter = KalmanFilter(state_dim=2, measurement_dim=1)# 模拟测量值
measurements = [1.2, 1.7, 2.5, 3.6]# 进行预测和更新
for z in measurements:kalman_filter.predict()kalman_filter.update(np.array([[z]]))# 打印更新后的状态估计值print(kalman_filter.x)

上述代码是一个简单的一维卡尔曼滤波器的实现。您可以根据需要调整状态维度 state_dim 和测量维度 measurement_dim,并设置相应的状态转移矩阵 F、测量矩阵 H、过程噪声协方差矩阵 Q 和测量噪声协方差矩阵 R。然后,通过 predict() 方法进行预测,通过 update() 方法进行更新。

请注意,卡尔曼滤波算法的具体实现可能因应用场景而有所不同。这里提供的代码仅用于展示基本的卡尔曼滤波器结构和操作步骤,需要根据具体需求进行相应的调整和扩展。

总结

具体实现上述功能的步骤如下:
在这里插入图片描述

单目测距:

  • 收集训练数据集,包含物体标注和对应的深度信息。
    构建深度学习模型,例如使用卷积神经网络(如ResNet、UNet等)进行图像到深度图的映射。
  • 使用收集的数据集进行模型训练,优化深度学习模型。
  • 在YOLOv5中添加单目测距功能时,加载训练好的深度学习模型,并在检测到对象时,使用该模型估计距离。

差帧算法:

  • 对视频序列进行物体检测和跟踪,获取物体在连续帧中的位置信息。
  • 计算相邻帧之间物体位置的差异,可以使用欧氏距离或其他相似度度量方法。
  • qq 1309399183
  • 将差异除以时间间隔,得到物体的平均速度。

追踪算法

除了DeepSORT,还有一些其他常见的目标追踪算法:

  1. SORT(Simple Online and Realtime Tracking):一个简单但高效的在线实时目标追踪算法,通过卡尔曼滤波器和匈牙利算法实现目标匹配。

  2. MOSSE(Minimum Output Sum of Squared Error):一种基于相关滤波器的目标追踪算法,使用最小输出平方误差来更新模板。

  3. KCF(Kernelized Correlation Filter):一种基于相关滤波器的目标追踪算法,使用核函数来建立目标与模板之间的关系。

  4. TLD(Tracking-Learning-Detection):一种结合了目标检测和跟踪的方法,使用学习算法来提高目标模型的准确性。

  5. ECO(Efficient Convolution Operators):一种基于傅里叶变换的目标追踪算法,能够快速计算目标模板与搜索区域之间的相似度。

  6. C-COT(Context-aware Correlation Tracking):一种基于上下文感知的目标追踪算法,使用上下文信息来提高目标模板的鲁棒性。

  7. StapleTrack:一种基于稀疏表示的目标追踪算法,使用稀疏编码来提取目标的特征表示。

这些追踪算法各有优缺点,具体应用时需要根据实际需求选择合适的算法。

http://www.lryc.cn/news/263558.html

相关文章:

  • flink 读取 apache paimon表,查看source的延迟时间 消费堆积情况
  • 无人机在融合通信系统中的应用
  • MySQL库的操作
  • 服务器解析漏洞有哪些?IIS\APACHE\NGINX解析漏洞利用
  • Https图片链接下载问题
  • Wireshark在移动网络中的应用
  • Leetcode 1901. 寻找峰值 II(Java + 列最大值 + 二分)
  • RabbitMQ 消息持久化
  • Opencv实验合集——实验四:图片融合
  • Java复习
  • 腾讯云微服务11月产品月报 | TSE 云原生 API 网关支持 WAF 对象接入
  • 性能优化-待处理
  • Linux: sysctl: network: ip_no_pmtu_disc,容易搞混的参数名称
  • 关于“Python”的核心知识点整理大全26
  • Axure中继器完成表格的增删改查的自定义元件(三列表格与十列表格)
  • 刚clone下来的项目如何上传到新的仓库
  • 面试题总结(十五)【ARMstm32】【华清远见西安中心】
  • 助听器概述
  • 学习k8s
  • iOS 将sdk更新到最新并为未添加版本号的三方库增加版本号
  • Appium —— 初识移动APP自动化测试框架Appium
  • 自助式可视化开发,ETLCloud的集成之路
  • diffu-Distributed inference with multiple GPUs
  • 在Python中使用Kafka帮助我们处理数据
  • 进程和线程和协程区别
  • 银行测试:第三方支付平台业务流,功能/性能/安全测试方法
  • 神经网络可以计算任何函数的可视化证明
  • SQL进阶理论篇(十三):数据库的查询优化器是什么?
  • 视觉SLAM中的相机分类及用途
  • Gin之GORM多表关联查询(多对多;自定义预加载SQL)