当前位置: 首页 > news >正文

ZKP Commitment (1)

MIT IAP 2023 Modern Zero Knowledge Cryptography课程笔记

Lecture 5: Commitment 1 (Ying Tong Lai)

  • Overview: Modern SNARK

    • IOP: Interactive Oracle Proof
    • Commitment Scheme
    • IOP “compiled by” the commitment scheme to get a non-interactive proof
    • An IOP is “information-theoretic" in that it provides soundness and zero-knowledge guarantees even when the prover and verifier are computationally unbounded. To make this possible, the proof system makes the idealised assumption of “oracle access": in other words, the verifier can only access the prover’s messages through random queries.
    • The commitment scheme instantiates this oracle access using cryptographic primitives (e.g. a one-way function): as a consequence, the resulting argument system is only secure with respect to a computationally bounded prover and/or verifier. To realise a succinct argument system, the chosen commitment scheme must provide low communication complexity relative to the computation being proven.
      在这里插入图片描述
  • Commitment Schemes

    • Formal definition:
      在这里插入图片描述

      • The Open Algorithm can be divided into two part
        • Prove(pp, C, m, r) -> π \pi π
        • Verify(pp, C, π \pi π) -> {0,1}
    • Pederson Commitment
      在这里插入图片描述

  • Vector Commitment

    • Vector Pedersen commitment.
      在这里插入图片描述

    • Merkle tree: A well-known solution for building vector commitments is a Merkle tree. It is used in distributed systems like Git, Cassandra, and Bitcoin for summarizing sets of data. Merkle trees also have hiding and extractability properties, which make them an ideal candidate for compiling an IOP into a non-interactive proof secure in the random oracle model.
      在这里插入图片描述

      • The Merkle Tree Commitment proved that
        • m i m_i mi is an element in the vector m m m
        • The root h h h is the commitment of the vector m m m
http://www.lryc.cn/news/263366.html

相关文章:

  • 【难点】【LRU】146.LRU缓存
  • 基于YOLOv8深度学习的吸烟/抽烟行为检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
  • 菜鸟学习日记(python)——匿名函数
  • CompleteFuture与Future的比较
  • 数据分享 I 全国市级商品房屋销售数据,shp/excel格式,2005-2020年数据
  • 面试题总结(十一)【C++】【华清远见西安中心】
  • c++_01_名字空间_复合类型_缺省参数_哑元函数
  • 前端常见面试题之html和css篇
  • 使用libaom处理av1编码教程
  • 面试题总结(十)【数据库】【华清远见西安中心】
  • 计算机网络:物理层(三种数据交换方式)
  • ubuntu18.04 64 位安装笔记——备赛笔记——2024全国职业院校技能大赛“大数据应用开发”赛项——任务2:离线数据处理
  • Nvidia 驱动安装不完整记录
  • 龙芯loongarch64服务器编译安装gcc-8.3.0
  • 宏基因组学Metagenome-磷循环Pcycle功能基因分析-从分析过程到代码及结果演示-超详细保姆级流程
  • element plus 日期范围 自定义内容
  • [23] GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians
  • JSON Ajax
  • ElasticSearch与HBase的分布式存储设计
  • 回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)
  • Bezier 曲线 2D
  • Linux静态ip
  • 一种基于外观-运动语义表示一致性的视频异常检测框架 论文阅读
  • Netty—NIO万字详解
  • 面试经典150题(32-37)
  • 手撕分布式缓存---HTTP Client搭建
  • word如何快速制作简易代码块
  • Linux常用网络指令
  • Spark on Yarn 安装配置实验(3.1.1)
  • 详解YOLOv5网络结构/数据集获取/环境搭建/训练/推理/验证/导出/部署