共享模型之无锁(三)
1.原子累加器
示例代码:
public class TestAtomicAdder {public static void main(String[] args) {for (int i = 0; i < 5; i++) {demo(() -> new AtomicLong(0),(adder) -> adder.getAndIncrement());}for (int i = 0; i < 5; i++) {demo(() -> new LongAdder(),(adder) -> adder.increment());}}/*** @param adderSupplier 提供者 无中生有 ()->结果* @param action 消费者 一个参数没结果* @param <T>*/private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) {T adder = adderSupplier.get();long start = System.nanoTime();List<Thread> ts = new ArrayList<>();//4个线程,每个累加5万次,最终结果是200000for (int i = 0; i < 4; i++) {ts.add(new Thread(() -> {for (int j = 0; j < 50000; j++) {action.accept(adder);}}));}ts.forEach(t -> t.start());ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}});long end = System.nanoTime();System.out.println(adder + " cost(ns):" + (end - start) / 1000_000);}
}
比较 AtomicLong 与 LongAdder:
LongAdder累加器性能提升的原因很简单,就是在有竞争时,设置多个累加单元,Therad-0累加Cell[0],而Thread-1累加Cell[1]… 最后将结果汇总.这样它们在累加时操作不同的Cell变量,因此减少了CAS重试失败,从而提高性能;
1.1.LongAdder源码分析
1>.LongAdder是并发大师Doug Lea(大哥李)的作品,设计的非常精巧;
2>.LongAdder类有几个关键域:
// 累加单元数组,懒惰初始化
// transient关键字作用在是序列化的时候保证这些域不会被序列化
transient volatile Cell[] cells;// 基础值,如果没有竞争,则用cas累加这个域
transient volatile long base;// 在cells创建或扩容时,置为1,表示加锁
transient volatile int cellsBusy;
3>.CAS锁
// 不要用于实践!!!
public class LockCas {private AtomicInteger state = new AtomicInteger(0);public void lock() {while (true) {if (state.compareAndSet(0, 1)) {break;}}}public void unlock() {log.debug("unlock...");state.set(0);}
}//测试代码
LockCas lock = new LockCas();
new Thread(() -> {log.debug("begin...");lock.lock();try {log.debug("lock...");sleep(1);} finally {lock.unlock();}
}).start();new Thread(() -> {log.debug("begin...");lock.lock();try {log.debug("lock...");} finally {lock.unlock();}
}).start();
4>.缓存行(hang)伪共享(一个缓存行加入了多个内存cell对象被称为伪共享)
其中Cell即为累加单元
// 防止缓存行伪共享,防止一个缓存行容纳多个内存cell对象
@sun.misc.Contended
static final class Cell {volatile long value;Cell(long x) { value = x; }// 最重要的方法, 用cas方式进行累加, prev表示旧值, next表示新值final boolean cas(long prev, long next) {return UNSAFE.compareAndSwapLong(this, valueOffset, prev, next);}// 省略不重要代码
}
1.1.1.LongAdder#add()源码
public void add(long x) {// as为累加单元数组// b为基础值// x为累加值Cell[] as; long b, v; int m; Cell a;// 进入 if 的两个条件// 1.as有值,表示已经发生过竞争, 进入if// 2.cas给base累加时失败了,表示base发生了竞争,进入ifif ((as = cells) != null || !casBase(b = base, b + x)) {// uncontended表示cell没有竞争boolean uncontended = true;// as还没有创建// 当前线程对应的cell还没有// cas给当前线程的cell累加失败uncontended=false(a为当前线程的cell)if (as == null || (m = as.length - 1) < 0 ||(a = as[getProbe() & m]) == null ||!(uncontended = a.cas(v = a.value, v + x)))// 进入cell数组创建、cell创建的流程longAccumulate(x, null, uncontended);}
}
1.1.2.Striped64#longAccumulate()源码
final void longAccumulate(long x, LongBinaryOperator fn,boolean wasUncontended) {int h;// 当前线程还没有对应的cell,需要随机生成一个h值用来将当前线程绑定到cellif ((h = getProbe()) == 0) {// 初始化probeThreadLocalRandom.current(); // force initialization// h对应新的probe值,用来对应(/占用)cell
h = getProbe();wasUncontended = true;}// collide为true表示需要扩容boolean collide = false; // True if last slot nonemptyfor (;;) {Cell[] as; Cell a; int n; long v;// 已经有了cellsif ((as = cells) != null && (n = as.length) > 0) {// 还没有cellif ((a = as[(n - 1) & h]) == null) {// 为cellsBusy加锁,创建cell,cell的初始累加值为x// 成功则 break,否则继续continue循环if (cellsBusy == 0) { // Try to attach new CellCell r = new Cell(x); // Optimistically createif (cellsBusy == 0 && casCellsBusy()) {boolean created = false;try { // Recheck under lockCell[] rs; int m, j;if ((rs = cells) != null &&(m = rs.length) > 0 &&rs[j = (m - 1) & h] == null) {rs[j] = r;created = true;}} finally {cellsBusy = 0;}if (created)break;continue; // Slot is now non-empty}}collide = false;}// 有竞争,改变线程对应的cell来重试caselse if (!wasUncontended) // CAS already known to failwasUncontended = true; // Continue after rehash// cas尝试累加,fn配合LongAccumulator不为null,配合LongAdder为null
else if (a.cas(v = a.value, ((fn == null) ? v + x :fn.applyAsLong(v, x))))break;// 如果cells长度已经超过了最大长度,或者已经扩容,改变线程对应的cell来重试caselse if (n >= NCPU || cells != as)collide = false; // At max size or stale// 确保collide为false进入此分支,就不会进入下面的else if进行扩容了
else if (!collide)collide = true;// 加锁else if (cellsBusy == 0 && casCellsBusy()) {try {if (cells == as) { // Expand table unless staleCell[] rs = new Cell[n << 1];for (int i = 0; i < n; ++i)rs[i] = as[i];cells = rs;}} finally {cellsBusy = 0;}collide = false;// 加锁成功,扩容continue; // Retry with expanded table}// 改变线程对应的cell对象h = advanceProbe(h);}// 还没有cells,尝试给cellsBusy加锁else if (cellsBusy == 0 && cells == as && casCellsBusy()) {// 加锁成功,初始化cells,最开始长度为2,并填充一个cellboolean init = false;try { // Initialize tableif (cells == as) {Cell[] rs = new Cell[2];rs[h & 1] = new Cell(x);cells = rs;init = true;}} finally {cellsBusy = 0;}if (init)// 成功则break;break;}// 上两种情况失败,尝试给base累加else if (casBase(v = base, ((fn == null) ? v + x :fn.applyAsLong(v, x))))break; // Fall back on using base}
}
每个线程刚进入longAccumulate()时,会尝试对应(/占用)一个cell对象(找到一个位置)
1.1.3.LongAdder#sum()源码
public long sum() {Cell[] as = cells; Cell a;long sum = base;if (as != null) {for (int i = 0; i < as.length; ++i) {if ((a = as[i]) != null)//将Cells数组中的每个元素进行累加sum += a.value;}}return sum;
}
扩展: 缓存与内存的速度比较
1>.CPU内存结构:
2>.CPU访问不同的缓存和内存耗费的时钟周期
①.CPU与内存的速度差异很大,需要靠预读数据至缓存来提升效率;
②.缓存以缓存行为单位,每个缓存行对应着一块内存,一般是64byte(8个long);
③.缓存的加入会造成数据副本的产生,即同一份数据会缓存在不同核心的缓存行中;
④.CPU要保证数据的一致性,如果某个CPU核心更改了数据,其它CPU核心对应的整个缓存行(64byte)必须全部失效;
⑤.由于内存Cell是数组形式,在内存中是连续存储的,一个内存Cell为24字节(16字节的对象头和8字节的value),因此缓存行可以存下2个内存Cell对象.这样问题来了:
- Core-0要修改Cell[0]
- Core-1要修改Cell[1]
无论谁修改成功,都会导致对方Core的缓存行失效,比如Core-0中Cell[0]=6000,Cell[1]=8000要累加Cell[0]=6001,Cell[1]=8000,这时会让Core-1的缓存行失效;
⑥."@sun.misc.Contended"就是用来解决这个问题的,它的原理是在使用此注解的对象或字段的前后各增加128字节大小的padding(填充内存Cell),从而让CPU将(不同的)对象预读至缓存时占用不同的缓存行,这样不会造成对方缓存行的失效;
2.Unsafe对象
2.1.概述
1> Unsafe对象提供了非常底层的,操作内存、线程的方法,Unsafe对象不能直接调用,只能通过反射获得;
2>.示例代码:
public class TestUnsafeDemo1 {public static void main(String[] args) throws Exception {//通过反射获取到unsafe对象,这里的参数"theUnsafe"是固定的写法,对应着unsafe对象中的(类类型)成员变量Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");//由于unsafe对象中"theUnsafe"成员变量是"private"私有的,因此要设置访问权限theUnsafe.setAccessible(true);//通过成员变量获取到所属的unsafe对象//由于unsafe对象中"theUnsafe"成员变量是静态的,因此这里原本的对象参数就是nullUnsafe unsafe = (Unsafe) theUnsafe.get(null);System.out.println(unsafe); //sun.misc.Unsafe@7ea987ac}
}
3>.封装成工具类:
public class UnsafeAccessor {static Unsafe unsafe;static {try { Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");theUnsafe.setAccessible(true);unsafe = (Unsafe) theUnsafe.get(null);} catch (NoSuchFieldException | IllegalAccessException e) {throw new Error(e);}}static Unsafe getUnsafe() {return unsafe;}
}
2.2.Unsafe CAS操作
1>.使用Unsafe对象通过CAS机制线程安全的修改对象的成员变量:
@Slf4j
public class TestUnsafeCasDemo1 {public static void main(String[] args) throws Exception {//获取unsafe对象Unsafe unsafe = UnsafeAccessor.getUnsafe();//获取对象中某个成员变量的偏移地址long idOffset = unsafe.objectFieldOffset(Teacher.class.getDeclaredField("id"));long nameOffset = unsafe.objectFieldOffset(Teacher.class.getDeclaredField("name"));//执行CAS操作Teacher teacher = new Teacher();boolean b = unsafe.compareAndSwapInt(teacher, idOffset, 0, 1);boolean b1 = unsafe.compareAndSwapObject(teacher, nameOffset, null, "张三");//打印结果log.info(teacher.toString());}
}@Data
@NoArgsConstructor
class Teacher {volatile int id;volatile String name;
}//unsafe对象封装
class UnsafeAccessor {static Unsafe unsafe;static {try {Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");theUnsafe.setAccessible(true);unsafe = (Unsafe) theUnsafe.get(null);} catch (NoSuchFieldException | IllegalAccessException e) {throw new Error(e);}}static Unsafe getUnsafe() {return unsafe;}
}
2.3.模拟实现原子整数
1>.以转账为例:
public class TestCustomAtomicIntegerDemo1 {public static void main(String[] args) {Account1.demo(new MyAtomicInteger(200));}
}//自定义的原子整数类
class MyAtomicInteger implements Account1 {private volatile int value;private static final long valueOffset;private static final Unsafe UNSAFE;static {UNSAFE = UnsafeAccessorUtil.getUnsafe();try {valueOffset = UNSAFE.objectFieldOffset(MyAtomicInteger.class.getDeclaredField("value"));} catch (NoSuchFieldException e) {e.printStackTrace();throw new RuntimeException();}}public MyAtomicInteger(int value) {this.value = value;}public int getValue() {return this.value;}public void decrement(int amount) {while (true) {int prev = this.value;int next = prev - amount;if (UNSAFE.compareAndSwapInt(this, valueOffset, prev, next)) {break;}}}@Overridepublic Integer getBalance() {return this.getValue();}@Overridepublic void withDraw(int amount) {this.decrement(amount);}
}//unsafe工具类
class UnsafeAccessorUtil {static Unsafe unsafe;static {try {Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");theUnsafe.setAccessible(true);unsafe = (Unsafe) theUnsafe.get(null);} catch (NoSuchFieldException | IllegalAccessException e) {throw new Error(e);}}static Unsafe getUnsafe() {return unsafe;}
}//封装转账相关的方法
interface Account1 {//获取余额Integer getBalance();//取款void withDraw(int amount);/*** 方法内会启动20个线程,每个线程做(-10元)的操作* 如果初始余额为200那么正确的结果应当是 0*/static void demo(Account1 account) {List<Thread> ts = new ArrayList<>();long start = System.nanoTime();for (int i = 0; i < 20; i++) {ts.add(new Thread(() -> {account.withDraw(10);}));}ts.forEach(Thread::start);ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}});long end = System.nanoTime();System.out.println(account.getBalance()+ " cost: " + (end - start) / 1000_000 + " ms");}
}