当前位置: 首页 > news >正文

【Pytorch】学习记录分享3——PyTorch 自动微分与线性回归

【【Pytorch】学习记录分享3——PyTorch 自动微分与线性回归

      • 1. autograd 包,自动微分
      • 2. 线性模型回归演示
      • 3. GPU进行模型训练

小结:只需要将前向传播设置好,调用反向传播接口,即可实现反向传播的链式求导

1. autograd 包,自动微分

自动微分是机器学习工具包必备的工具,它可以自动计算整个计算图的微分。

PyTorch内建了一个叫做torch.autograd的自动微分引擎,该引擎支持的数据类型为:浮点数Tensor类型 ( half, float, double and bfloat16) 和复数Tensor 类型(cfloat, cdouble)

PyTorch中与自动微分相关的常用的Tensor属性和函数:

属性requires_grad:
默认值为False,表明该Tensor不会被自动微分引擎计算微分。设置为True,表明让自动微分引擎计算该Tensor的微分
属性grad:存储自动微分的计算结果,即调用backward()方法后的计算结果
方法backward(): 计算微分,一般不带参数,等效于:backward(torch.tensor(1.0))。若backward()方法在DAG的root上调用,它会依据链式法则自动计算DAG所有枝叶上的微分。
方法no_grad():禁用自动微分上下文管理, 一般用于模型评估或推理计算这些不需要执行自动微分计算的地方,以减少内存和算力的消耗。另外禁止在模型参数上自动计算微分,即不允许更新该参数,即所谓的冻结参数(frozen parameters)。
zero_grad()方法:PyTorch的微分是自动积累的,需要用zero_grad()方法手动清零

# 模型:z = x@w + b;激活函数:Softmax
x = torch.ones(5)  # 输入张量,shape=(5,)
labels = torch.zeros(3) # 标签值,shape=(3,)
w = torch.randn(5,3,requires_grad=True) # 模型参数,需要计算微分, shape=(5,3)
b = torch.randn(3, requires_grad=True)  # 模型参数,需要计算微分, shape=(3,)
z = x@w + b # 模型前向计算
outputs = torch.nn.functional.softmax(z) # 激活函数
print("z: ",z)
print("outputs: ",outputs)
loss = torch.nn.functional.binary_cross_entropy(outputs, labels)
# 查看loss函数的微分计算函数
print('Gradient function for loss =', loss.grad_fn)
# 调用loss函数的backward()方法计算模型参数的微分
loss.backward()
# 查看模型参数的微分值
print("w: ",w.grad)
print("b.grad: ",b.grad)

在这里插入图片描述

小姐:

方法描述
.requires_grad 设置为True会开始跟踪针对 tensor 的所有操作
.backward()张量的梯度将累积到 .grad 属性
import torchx=torch.rand(1)
b=torch.rand(1,requires_grad=True)
w=torch.rand(1,requires_grad=True)
y = w * x
z = y + bx.requires_grad, w.requires_grad,b.requires_grad,y.requires_grad,z.requires_gradprint("x: ",x, end="\n"),print("b: ",b ,end="\n"),print("w: ",w ,end="\n")
print("y: ",y, end="\n"),print("z: ",z, end="\n")# 反向传播计算
z.backward(retain_graph=True) #注意:如果不清空,b每一次更新,都会自我累加起来,依次为1 2 3 4 。。。w.grad
b.grad

运行结果:
在这里插入图片描述
反向传播求导原理:
在这里插入图片描述

2. 线性模型回归演示

import torch
import torch.nn as nn## 线性回归模型: 本质上就是一个不加 激活函数的 全连接层
class LinearRegressionModel(nn.Module):def __init__(self, input_size, output_size):super(LinearRegressionModel, self).__init__()self.linear = nn.Linear(input_size, output_size)def forward(self, x):out = self.linear(x)return out
input_size = 1
output_size = 1model = LinearRegressionModel(input_size, output_size)
model# 指定号参数和损失函数
epochs = 500
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
criterion = nn.MSELoss()# train model
for epoch in range(epochs):epochs+=1#注意 将numpy格式的输入数据转换成 tensorinputs = torch.from_numpy(x_train)labels = torch.from_numpy(y_train)#每次迭代梯度清零optimizer.zero_grad()#前向传播outputs = model(inputs)#计算损失loss = criterion(outputs, labels)#反向传播loss.backward()#updates weight and parametersoptimizer.step()if epoch % 50 == 0:print("Epoch: {}, Loss: {}".format(epoch, loss.item()))# predict model test,预测结果并且奖结果转换成np格式
predicted =model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
predicted#model save
torch.save(model.state_dict(),'model.pkl')#model 读取
model.load_state_dict(torch.load('model.pkl'))

在这里插入图片描述

3. GPU进行模型训练

只需要 将模型和数据传入到“cuda”中运行即可,详细实现见截图

import torch
import torch.nn as nn
import numpy as np# #构建一个回归方程 y = 2*x+1#构建输如数据,将输入numpy格式转成tensor格式
x_values = [i for i in range(11)]
x_train = np.array(x_values,dtype=np.float32)
x_train = x_train.reshape(-1,1)y_values = [2*i + 1 for i in x_values]
y_train = np.array(y_values, dtype=np.float32)
y_train = y_train.reshape(-1,1)## 线性回归模型: 本质上就是一个不加 激活函数的 全连接层
class LinearRegressionModel(nn.Module):def __init__(self, input_size, output_size):super(LinearRegressionModel, self).__init__()self.linear = nn.Linear(input_size, output_size)def forward(self, x):out = self.linear(x)return outinput_size = 1
output_size = 1model = LinearRegressionModel(input_size, output_size)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)# 指定号参数和损失函数
epochs = 500
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
criterion = nn.MSELoss()# train model
for epoch in range(epochs):epochs+=1#注意 将numpy格式的输入数据转换成 tensorinputs = torch.from_numpy(x_train)labels = torch.from_numpy(y_train)#每次迭代梯度清零optimizer.zero_grad()#前向传播outputs = model(inputs)#计算损失loss = criterion(outputs, labels)#反向传播loss.backward()#updates weight and parametersoptimizer.step()if epoch % 50 == 0:print("Epoch: {}, Loss: {}".format(epoch, loss.item()))# predict model test,预测结果并且奖结果转换成np格式
predicted = model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
predicted#model save
torch.save(model.state_dict(),'model.pkl')

在这里插入图片描述

http://www.lryc.cn/news/260203.html

相关文章:

  • Android Studio实现俄罗斯方块
  • 【Hive】——DDL(DATABASE)
  • 【华为OD题库-092】单词加密-java
  • 构建一个简单的 npm 验证项目
  • 利用vue-okr-tree实现飞书OKR对齐视图
  • 持续集成交付CICD:CentOS 7 安装SaltStack
  • vscode 环境配置
  • pytorch文本分类(二):引入pytorch处理文本数据
  • Centos硬盘操作合集
  • 三大循环语句
  • Mybatis详解
  • spring cloud alibaba RocketMQ 最佳实践
  • php使用OpenCV实现从照片中截取身份证区域照片
  • 抖音ip地址切换会看不到视频吗
  • 有关爬虫http/https的请求与响应
  • 模块二——滑动窗口:438.找到字符串中所有字母异位词
  • 排序算法(二)-冒泡排序、选择排序、插入排序、希尔排序、快速排序、归并排序、基数排序
  • 智能优化算法应用:基于探路者算法3D无线传感器网络(WSN)覆盖优化 - 附代码
  • 高效排队,紧急响应:RabbitMQ Priority Queue全面指南【RabbitMQ 九】
  • Java中使用EasyExcel写excel文件
  • 【C语言程序设计】函数程序设计
  • GDPU 数据结构 天码行空14
  • 科技提升安全,基于YOLOv5系列模型【n/s/m/l/x】开发构建商超扶梯场景下行人安全行为姿态检测识别系统
  • 【网络安全】网络防护之旅 - 对称密码加密算法的实现
  • 鸿蒙arkTs Toast抽取 及使用
  • 网络安全渗透测试的相关理论和工具
  • C 语言 xml 库的使用
  • 群晖(Synology)云备份的方案是什么
  • Flask 中的跨域难题:定义、影响与解决方案深度解析
  • 汽车IVI中控开发入门及进阶(十二):V4L2视频