当前位置: 首页 > news >正文

辨析旅行商问题(TSP)与车辆路径问题(VRP)

目录

    • 前言
    • 旅行商问题 (TSP)
      • 问题介绍
      • 数学模型
        • 符号定义
        • 问题输入
        • 约束条件
        • 目标函数
        • 问题输出
      • 解的空间
        • 解空间大小计算
        • 解释
    • 车辆路径问题 (VRP)
      • 问题介绍
      • TSP到VRP的过渡
      • 数学模型
        • 符号定义
        • 问题输入
        • 约束条件
        • 优化目标
        • 问题输出
      • 解空间
        • 特殊情况
        • 一般情况
    • TSP 与 VRP 对比

前言

计划是通过本文的撰写,捋清楚TSP和VRP的本质不同。(什么是本质❔)

对比TSP(旅行商问题)VRP(车辆路径问题)
描述给定一个城市列表以及每对城市之间的距离,访问每个城市一次并返回出发城市的最短路线是什么车队需要向给定的一组客户家中取货,需要遍历的最佳路线集是什么?
输入城市数量,距离矩阵城市数量,距离矩阵,任务量,卡车容量
约束每个城市仅访问一次每个城市仅访问一次,满足容量要求
目标最小化总旅行距离最小化总旅行距离
输出一个旅行商访问城市的顺序多个车辆的行驶路线
空间城市序列: ( n − 1 ) ! (n-1)! (n1)!城市序列加上车辆任务分配: n ! < S < P ( n , m ) k n! < S < P(n,m)^k n!<S<P(n,m)k

n = 13 , m = 5 , k = 3 n=13,m=5,k=3 n=13m=5k=3为例,对比解空间:

  • TSP解空间: ( n − 1 ) ! = ( 13 − 1 ) ! = 12 ! = 4.79 × 1 0 8 (n-1)! = (13-1)! = 12!=4.79 × 10^8 (n1)!=(131)!=12!=4.79×108
  • VRP解空间:
    • 下限: n ! = 13 ! = 12 ! = 6.23 × 1 0 9 n! = 13! = 12!= 6.23 × 10^9 n!=13!=12!=6.23×109
    • 上限: P ( n , m ) k = P ( 15 , 5 ) 3 = 3.68 × 1 0 15 P(n,m)^k=P(15,5)^3= 3.68 × 10^{15} P(n,m)k=P(15,5)3=3.68×1015

旅行商问题 (TSP)

问题介绍

旅行商问题(英语:Travelling salesman problem, TSP)在1930年被首次提出,是优化领域研究最深入的问题之一。问题的表述是:“给定一个城市列表以及每对城市之间的距离,访问每个城市一次并返回出发城市的最短路线是什么?”

TSP示意图
图片来源:algorist.com

数学模型

符号定义
  • n n n: 城市的数量。
  • c i j c_{ij} cij: 从城市 i i i 到城市 j j j 的距离或成本。
  • x i j x_{ij} xij: 决策变量。如果旅行商从城市 i i i 直接前往城市 j j j,则为 1,否则为 0。
问题输入
  • 城市数量: n n n
  • 距离矩阵: c i j c_{ij} cij,表示从城市 i i i 到城市 j j j 的距离或成本(对所有 i , j = 1 , 2 , . . . , n i, j = 1, 2, ..., n i,j=1,2,...,n i ≠ j i \neq j i=j)。
约束条件

每个城市只访问一次:
∑ j = 1 , j ≠ i n x i j = 1 ∀ i = 1 , 2 , … , n \sum_{j=1, j \neq i}^{n} x_{ij} = 1 \quad \forall i = 1, 2, \ldots, n j=1,j=inxij=1i=1,2,,n
∑ i = 1 , i ≠ j n x i j = 1 ∀ j = 1 , 2 , … , n \sum_{i=1, i \neq j}^{n} x_{ij} = 1 \quad \forall j = 1, 2, \ldots, n i=1,i=jnxij=1j=1,2,,n

$$
\sum_{j=1, j \neq i}^{n} x_{ij} = 1 \quad \forall i = 1, 2, \ldots, n
$$
$$
\sum_{i=1, i \neq j}^{n} x_{ij} = 1 \quad \forall j = 1, 2, \ldots, n
$$
目标函数

最小化总旅行距离或成本:
min ⁡ ∑ i = 1 n ∑ j = 1 , j ≠ i n c i j x i j \min \sum_{i=1}^{n}\sum_{j=1, j \neq i}^{n} c_{ij} x_{ij} mini=1nj=1,j=incijxij

$$
\min \sum_{i=1}^{n}\sum_{j=1, j \neq i}^{n} c_{ij} x_{ij}
$$
问题输出
  • 访问城市的顺序。

解的空间

旅行商问题的解空间是指所有可能的路径组合数量。

解空间大小计算
  • 对于 n n n 个城市的 TSP,旅行商从一个城市出发,并有 ( n − 1 ) (n - 1) (n1) 个城市可以选择作为第一站。
  • 在访问了第一个城市后,剩下 ( n − 2 ) (n - 2) (n2) 个城市可以选择作为下一站,以此类推。
  • 最后,旅行商将从最后一个未访问的城市返回起始城市。

因此,TSP 的解空间大小为所有可能路径的数量,计算公式为:

( n − 1 ) ! (n - 1)! (n1)!

其中, ( n − 1 ) ! (n - 1)! (n1)! 表示 ( n − 1 ) (n - 1) (n1) 的阶乘,即 1 × 2 × 3 × … × ( n − 2 ) × ( n − 1 ) 1 \times 2 \times 3 \times \ldots \times (n - 2) \times (n - 1) 1×2×3××(n2)×(n1)

解释

旅行商可以从任何城市开始,但是不同的起点并不会影响各城市在解中的相对顺序。每个路径都可以通过循环移位变换为从特定城市(比如第一个城市)开始的路径,所以实际上只需考虑从一个固定城市出发的路径。

车辆路径问题 (VRP)

问题介绍

车辆路径问题(英语:Vehicle Routing Problem,VRP)在1959年被首次提出,是TSP的泛化形式,包含TSP问题。问题描述:车队需要向给定的一组客户家中取货或是送货,需要遍历的最佳路线集是什么?
值得一提的是,在1959年被提出时,论文名称是’The truck dispatching problem’,并没有使用Vehicle Routing Problem的表述。在随后十多年的相关研究中,也一直没有直接使用VRP这一名词的论文。直到Christofides, N.的论文’The vehicle routing problem’于1976年发表后,后续研究普遍采用了VRP的表述。

TSP到VRP的过渡

我们把TSP问题或一个场景表述为一辆空载的卡车从车库或是车场(出发城市)出发需要到多位客户的家中(其它城市)取货物,待取完所有货物后需要返回车库。这里有一个潜在的假定,不管所有客户家中的货物累加和究竟有多大,这一辆卡车总能全部纳入到自己的车厢中并继续正常行驶。也就是,车辆的运输能力 C C C 大于等于所有的货物量:
C ≥ ∑ i q i C \ge \sum\limits_i {{q_i}} Ciqi
其中 q i q_i qi 表述第 i i i 个客户家中的货物量。
但是,当面临一辆卡车完不成所有的任务量时,也就是:
C < ∑ i q i C < \sum\limits_i {{q_i}} C<iqi
就需要多辆车去完成,或者是一辆车多次往返。
按照论文The truck dispatching problem. Management science 6, 80–91 (1959)里面的介绍,把该条件描述为:
C ≪ ∑ i q i C \ll \sum\limits_i {{q_i}} Ciqi
并且,文章提出假定一辆车最多只能访问 m m m 个点,只有当 m m m 比较大时,有研究意义,否则的话,求解比较容易,如下:

If m m m is small, optimal sets of m m m points may often be determined by inspection of a map which contains the points and the arcs connecting them. One would look for “clusters of points” and determine by trial and error the order in which they should be traversed, taking care that no loop crosses itself. However, when clusters are not present in sufficient numbers or when m m m is large, this procedure becomes inapplicable. In this case near-best solutions may be obtained by the algorithm in this paper.
如果 m m m 很小,最优的 m m m 个点的集合通常可以通过检查包含这些点和连接它们的弧的地图来确定。人们会寻找"点的簇集",并通过试验和错误来确定它们应该按照什么顺序遍历,确保没有回路交叉。然而,当簇集数量不足或者 m m m 很大时,这种方法就不适用了。在这种情况下,可以通过本文中的算法获得近似最优解。

数学模型

符号定义
  • n n n: 任务点的数量。
  • P i P_i Pi: 第 i i i 个任务点的位置,( i = 1 , 2 , … , n i=1,2,\ldots,n i=1,2,,n)。
  • [ D ] = [ d i j ] [D]=[d_{ij}] [D]=[dij]: 任务点间的距离邻接矩阵,( i , j = 0 , 1 , … , n i,j=0,1,\ldots,n i,j=0,1,,n)。
  • ( Q ) = ( q i ) (Q) = (q_i) (Q)=(qi): 各任务点的任务量,( i = 1 , 2 , … , n i=1,2,\ldots,n i=1,2,,n)。
  • C C C: 卡车的容量,满足 C > max ⁡ ( q i ) C > \max(q_i) C>max(qi)
  • x i j x_{ij} xij: 决策变量。如果任务点 P i P_i Pi P j P_j Pj 被同一辆车辆访问,则 x i j = x j i = 1 x_{ij} = x_{ji} = 1 xij=xji=1;如果不被同一辆车辆访问,则 x i j = x j i = 0 x_{ij} = x_{ji} = 0 xij=xji=0;对于所有 i i i, x i i = 0 x_{ii} = 0 xii=0
问题输入
  • 给定 n n n 个任务点的位置 P i P_i Pi
  • 给定任务点间的距离邻接矩阵 [ D ] [D] [D]
  • 给定任务点的任务量 ( Q ) (Q) (Q)
  • 给定卡车的容量 $C。
约束条件
  1. 车辆的起点和终点均是车库 P 0 P_0 P0
  2. 每个任务点 P i P_i Pi 除了与车库 P 0 P_0 P0 外,最多与另一个任务点 P j P_j Pj 被同一个车辆访问一次。对于所有 i = 1 , 2 , … , n i = 1, 2, \ldots, n i=1,2,,n,有 ∑ j = 0 n x i j = 1 \sum_{j = 0}^{n} x_{ij} = 1 j=0nxij=1
  3. 每辆车辆在任何时候的载荷不得超过其容量 C C C。对于车辆在访问任务点 P i P_i Pi 时的载荷量,满足以下条件:
    ∑ i = 1 n q i x i j ≤ C ∀ j = 1 , 2 , … , n \sum_{i=1}^{n} q_i x_{ij} \le C \quad \forall j = 1, 2, \ldots, n i=1nqixijCj=1,2,,n
    其中, q i q_i qi 表示任务点 P i P_i Pi 的任务量, x i j x_{ij} xij 表示车辆是否访问了任务点 P i P_i Pi
$$\sum_{i=1}^{n} q_i x_{ij} \le C \quad \forall j = 1, 2, \ldots, n$$
优化目标

最小化总行驶距离 D D D
min ⁡ D = ∑ i , j = 0 n d i j x i j \min D = \sum_{i,j=0}^n d_{ij} x_{ij} minD=i,j=0ndijxij

$$\min D = \sum_{i,j=0}^n d_{ij} x_{ij}$$
问题输出
  • 各车辆的行驶路线。

解空间

在车辆路径问题(VRP)中,我们考虑除起点和终点外的所有车辆行驶路线。这些路线可以排列成一个由 n n n 个点组成的一维序列 S S S,拥有 n ! n! n! 种可能性。

特殊情况

假设 n n n m m m 的整数倍,且每辆车必须经过 m m m 个点才能返回车库。此时,序列 S S S 只需平均分配给各车辆,解空间仍为 n ! n! n! 种。

一般情况

如果每辆车经过的点数在 1 到 m m m 之间,解空间的计算变得复杂。

目前尚没有发现计算精确解空间大小的文献, AI 也无法给出确切数字,下面是一个粗略的估算方法。

  • 单辆车的最大访问点数为 m m m,可能的访问序列数量为排列数 P ( n , m ) P(n,m) P(n,m)
  • 对于 k k k 辆车,考虑所有可能的序列组合。
  • 考虑到车辆间访问点的重叠,实际解空间小于 P ( n , m ) k P(n,m)^k P(n,m)k

因此,解空间的上限估算为 P ( n , m ) k P(n,m)^k P(n,m)k

TSP 与 VRP 对比

对比条目TSP(旅行商问题)VRP(车辆路径问题)
问题描述给定一个城市列表以及每对城市之间的距离,访问每个城市一次并返回出发城市的最短路线是什么车队需要向给定的一组客户家中取货,需要遍历的最佳路线集是什么?
问题输入城市数量,距离矩阵城市数量,距离矩阵,任务量,卡车容量
约束条件每个城市仅访问一次每个城市仅访问一次,满足容量要求
优化目标最小化总旅行距离最小化总旅行距离
问题输出一个旅行商访问城市的顺序多个车辆的行驶路线
求解空间城市序列: ( n − 1 ) ! (n-1)! (n1)!城市序列加上车辆任务分配: n ! < S < P ( n , m ) k n! < S < P(n,m)^k n!<S<P(n,m)k

以n=13,m=5,k=3为例

  • TSP解空间: ( n − 1 ) ! = ( 13 − 1 ) ! = 12 ! = 4.79 × 1 0 8 (n-1)! = (13-1)! = 12!=4.79 × 10^8 (n1)!=(131)!=12!=4.79×108
  • VRP解空间:
    • 下限: n ! = 13 ! = 12 ! = 6.23 × 1 0 9 n! = 13! = 12!= 6.23 × 10^9 n!=13!=12!=6.23×109
    • 上限: P ( n , m ) k = P ( 15 , 5 ) 3 = 3.68 × 1 0 15 P(n,m)^k=P(15,5)^3= 3.68 × 10^{15} P(n,m)k=P(15,5)3=3.68×1015

  • 理解本质区别了吗?
    • 啥是本质,还是迷迷糊糊的😶‍🌫️,似乎是还差点,又似乎是还差许多💫。下雪了,开心👻
      在这里插入图片描述
http://www.lryc.cn/news/257277.html

相关文章:

  • 2024年JAVA招聘行情如何?
  • 【合集】SpringBoot——Spring,SpringBoot,SpringCloud相关的博客文章合集
  • yolov5 获取漏检图片脚本
  • Unity之OpenXR+XR Interaction Toolkit接入微软VR设备Windows Mixed Reality
  • 【小聆送书第二期】人工智能时代AIGC重塑教育
  • 中国移动公网IP申请过程
  • 动态获取绝对路径
  • pytorch中的归一化:BatchNorm、LayerNorm 和 GroupNorm
  • RocketMq源码分析(九)--顺序消息
  • Windows下nginx的启动,重启,关闭等功能bat脚本
  • Python 字典:dic = {} 和 dic = defaultdict(list)之间的区别
  • 绘图 Seaborn 10个示例
  • airserver mac 7.27官方破解版2024最新安装激活图文教程
  • 文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《考虑移动式储能调度的配电网灾后多源协同孤岛运行策略》
  • Spring Boot 优雅地处理重复请求
  • TailwindCSS 多主题色配置
  • Vue3:表格单元格内容由:图标+具体内容 构成
  • 【项目日记(一)】高并发内存池项目介绍
  • 4-Docker命令之docker commit
  • RabbitMQ学习笔记10 综合实战 实现新商家规定时间内上架商品检查
  • Project Euler 865 Triplicate Numbers(线性dp)
  • 计算机网络测试题第二部分
  • linux 15day apache apache服务安装 httpd服务器 安装虚拟主机系统 一个主机 多个域名如何绑定
  • Linux和Windows环境下如何使用gitee?
  • Docker安装教程
  • 【PWN】学习笔记(二)【栈溢出基础】
  • 02-Nacos和Eureka的区别与联系
  • 常见的Linux系统版本
  • 基于JavaWeb+SSM+Vue微信小程序的科创微应用平台系统的设计和实现
  • 【Spring Boot 源码学习】ApplicationListener 详解