当前位置: 首页 > news >正文

目标检测——OverFeat算法解读

论文:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
作者:Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun
链接:https://arxiv.org/abs/1312.6229

文章目录

  • 1、算法概述
  • 2、OverFeat细节
    • 2.1 分类
    • 2.2 定位
  • 3、创新点

1、算法概述

OverFeat算法同时实现图像分类、定位及检测任务,也证明了采用一个网络同时做三种任务可以提高分类、定位、检测的准确率。文章介绍了一种通过累积预测边界框来定位和检测的方法。通过结合许多定位预测,可以在没有背景样本训练的情况下进行检测任务,不进行背景训练也可以让网络只关注正面类,以获得更高的准确性。文中报道的结果是基于ILSVRC2013的,分类报道TOP5(分类概率前5个包含groundTruth就算正确);定位也是报道TOP5但是需加上TOP5各自对应目标的bounding box预测且bounding box与groundTruth矩形框标注的iou大于50%才能算bounding box预测正确;检测任务就需要预测图像中的每个目标了(类别加定位,包括背景类)并以mAP的指标报道结果。

2、OverFeat细节

2.1 分类

OverFeat仿照AlexNet设计,但是对网络结构和推理步骤进行了改进;文中分类网络分为两种:速度和精度,结构如下:
在这里插入图片描述
在这里插入图片描述
相对于AlexNet,它没有采用对比度归一化,没有用带重叠的池化层,网络前两层使用了小的stride从而保留了比较大的特征图,因为大的stride虽然能快速减小特征图从而对网络推理提速但是对精度有损害。最终精度模型比速度模型的TOP5错误率少了2.21%(14.18%对16.39%)。

  • 多尺度分类
    AlexNet中,应用了多视角(multi-view)投票技术用来提升最后预测类别的精度,即通过4次corner_crop加一次center_crop,同时应用水平翻转共计10次分类结果来投票出最终的类别;然而这种方式还是忽略了大量图片区域,也在图片重叠区域存在计算冗余,此外,这种方式也只是图片的单一尺度,不一定是卷积神经网络最合适的推理尺度。所以作者采用了6种不同尺度的测试图像作为输入(每个尺度图像还增加了水平翻转),而且作者认为在特征提取最后一层(conv 5)直接做 max pooling,将导致最终输入图像的检测粒度不足,提出用偏移池化(offset pooling)操作实现让分类器的视角窗口在特征图上滑动,最终将偏移池化得到的特征图组合在一起输出结果。如下表、下图所示:
    在这里插入图片描述
    在这里插入图片描述
  • 卷积和高效的滑窗
    在此之前,很多滑动窗口技术都是为每个窗口重复进行所有的计算,这对计算资源的消耗是巨大的。而卷积天然就带有滑窗的方式,如下图所示,因为卷积操作是共享卷积核滑动操作,所以计算非常高效,作者最后在测试阶段,将最后的全连接层替换成了1x1卷积层,这样就能适应比训练图像大的图片测试了。
    在这里插入图片描述

2.2 定位

由分类到定位,基于之前的分类网络,把网络的分类器替换成回归器,训练这个网络预测每个位置和尺度的物体边界框,就可以实现定位任务。回归器也取网络的前5层的feature map输出作为bounding box的输入,该feature map也用作分类器训练,所以分类器和回归器共用前面的特征。回归器的输出是4个值,代表bounding box的坐标,每个类都有对应的bounding box预测。训练回归器时,前5层不参与训练;如果样本和真实标签的重叠小于50%,则样本不参与回归器的训练。(由于样本预处理和增强的原因,可能导致样本的范围和真实标签已经重叠较小)。下面看看定位/检测具体的工作步骤:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、创新点

采用multiscale、sliding window、offset pooling实现多尺度滑窗采样,基于卷积高效实现滑窗思想,在同一网络框架下实现分类、定位、检测。

http://www.lryc.cn/news/255912.html

相关文章:

  • vue获取主机id和IP地址
  • 在pytorch中自定义dataset读取数据
  • ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
  • Java后端的登录、注册接口是怎么实现的
  • TCP Keepalive 和 HTTP Keep-Aliv
  • 操作系统 复习笔记
  • Java中实现单例模式的方式
  • Vue3-01-创建项目
  • Go 语言中的反射机制
  • [leetcode 前缀和]
  • Python与ArcGIS系列(十五)根据距离抓取字段
  • YOLOv8分割训练及分割半自动标注
  • jsp页面通过class或者id获取a标签上的属性的值
  • 题目:美丽的区间(蓝桥OJ 1372)
  • 解决:During handling of the above exception, another exception occurred
  • 计算机基础知识65
  • Python开发运维:Python垃圾回收机制
  • ros2/ros安装ros-dep||rosdep init错误
  • 《深入理解计算机系统》学习笔记 - 第四课 - 机器级别的程序
  • 云原生(Cloud Native)——概念,技术,背景,优缺点,实践例子
  • ElasticSearch之线程池
  • StoneDB-8.0-V2.2.0 企业版正式发布!性能优化,稳定性提升,持续公测中!
  • 【数据结构 — 排序 — 插入排序】
  • 物联网后端个人第十四周总结
  • 在uniapp中,可以使用那些预定义的样式类
  • mybatis的数据库连接池
  • Vue 的 el-select 下拉选项中,只有当文字超出时才显示提示框,未超出的则不显示
  • 【Python】pptx文件转pdf
  • response应用及重定向和request转发
  • CentOS常用基础命令大全(linux命令)2