当前位置: 首页 > news >正文

python/matlab图像去雾/去雨综述

图像去雾和去雨是计算机视觉领域的两个重要任务,旨在提高图像质量和可视化效果。本文将综述图像去雾和去雨的算法、理论以及相关项目代码示例。

一、图像去雾算法

  1. 基于暗通道先验的方法:
    这是广泛应用于图像去雾的经典算法之一。该方法基于一个观察:自然场景中的大多数像素在至少一个颜色通道上具有非常低的值。通过分析图像的暗通道,可以估计场景的全局大气光照和深度信息,从而去除雾霾。
    在这里插入图片描述

  2. 基于物理模型的方法:
    这种方法基于图像成像过程中的物理模型,例如散射模型和退化模型。它们通过对图像的特定属性进行建模,如散射模型中的光线散射、传播和吸收等,来恢复原始场景。
    在这里插入图片描述

def dark_channel(image, patch_size):# 计算图像暗通道min_channel = np.min(image, axis=2)kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (patch_size, patch_size))dark_channel = cv2.erode(min_channel, kernel)return dark_channeldef estimate_atmospheric_light(image, dark_channel, top_percentage):# 估计大气光照值num_pixels = int(dark_channel.size * top_percentage / 100)dark_channel_flat = dark_channel.flatten()indices = dark_channel_flat.argsort()[-num_pixels:]atmospheric_light = np.mean(image.reshape(-1, 3)[indices], axis=0)return atmospheric_lightdef transmission_estimate(image, atmospheric_light, omega, patch_size):# 估计透射率normalized_image = image.astype(np.float64) / atmospheric_lightdark_channel = dark_channel(normalized_image, patch_size)transmission = 1 - omega * dark_channelreturn transmissiondef refine_transmission(image, transmission, epsilon, patch_size):# 优化透射率gray_image = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_BGR2GRAY)transmission_filtered = cv2.guidedFilter(gray_image, transmission, patch_size, epsilon)return transmission_filtereddef recover_scene(image, transmission, atmospheric_light, t0=0.1):# 恢复场景transmission_clipped = np.clip(transmission, t0, 1)recovered_scene = np.zeros_like(image, dtype=np.float64)for i in range(3):recovered_scene[:,:,i] = (image[:,:,i].astype(np.float64) - atmospheric_light[i]) / transmission_clipped + atmospheric_light[i]recovered_scene = np.clip(recovered_scene, 0, 255).astype(np.uint8)return recovered_scene
  1. 基于深度学习的方法:
    近年来,深度学习技术的发展为图像去雾带来了显著的改进。深度学习模型能够从大规模数据中学习图像的特征表示,从而实现更准确的去雾效果。例如,基于生成对抗网络(GAN)的方法结合了生成模型和判别模型,以生成真实感的去雾图像。
    在这里插入图片描述
    二、图像去雨算法

  2. 基于滤波的方法:
    这是最简单的去雨方法之一,通过应用线性或非线性滤波器来平滑图像并去除雨滴。这种方法的局限性在于无法处理复杂的雨滴遮挡情况。

  3. 基于物理模型的方法:
    类似于图像去雾算法,图像去雨也可以基于物理模型进行建模。通过建立雨滴的传播和反射模型,可以预测雨滴的位置和运动轨迹,并从受雨滴遮挡的图像中恢复出清晰的场景。
    在这里插入图片描述

  4. 基于深度学习的方法:
    同样,深度学习技术在图像去雨任务中也取得了显著的进展。通过训练深度神经网络,可以学习到从受雨滴遮挡的图像中恢复出清晰场景的映射关系。这些网络可以捕捉到雨滴的形状、纹理等特征,并生成去雨后的图像。

在这里插入图片描述

三、相关项目代码示例

  1. DehazeNet:
    这是一个基于深度学习的图像去雾项目,使用卷积神经网络来学习图像的去雾映射。该项目提供了预训练模型和示例代码,可用于去除图像中的雾霾效果。

  2. RainNet:
    这是一个基于深度学习的图像去雨项目,使用生成对抗网络来学习图像的去雨映射。该项目提供了模型训练代码和测试代码,可用于去除图像中的雨滴效果。

% 读取输入图像
input_image = imread('input.jpg');% 将输入图像转换为灰度图像
gray_image = rgb2gray(input_image);% 应用快速傅里叶变换 (FFT)
fft_image = fftshift(fft2(double(gray_image)));% 创建垂直方向的滤波器
[M, N] = size(gray_image);
filter = ones(M, N);
filter(:, N/2-5:N/2+5) = 0; % 将垂直方向上的频率范围设置为零% 将滤波器应用于频域图像
filtered_fft_image = fft_image .* filter;% 应用逆傅里叶变换
filtered_image = abs(ifft2(ifftshift(filtered_fft_image)));

以上是关于图像去雾和去雨的算法、理论以及相关项目代码示例的综述。这些方法和项目为解决图像质量问题提供了有力的工具和技术,对于改善图像可视化效果具有重要意义。

http://www.lryc.cn/news/254223.html

相关文章:

  • Docker+jenkins+gitlab实现持续集成
  • Web前端JS如何获取 Video/Audio 视音频声道(左右声道|多声道)、视音频轨道、音频流数据
  • MySQL生成UUID并去除-
  • 包与字符串
  • 【Gradle】mac环境安装Gradle及配置
  • 使用C语言操作kafka ---- librdkafka
  • 误用STM32串口发送标志位 “USART_FLAG_TXE” “USART_FLAG_TC”造成的BUG
  • 指针(三)
  • labelimg遇到的标签修改问题:修改一张图像的标签时,保存后导致classes.txt改变
  • Spring Cloud Gateway使用和配置
  • RT-Thread 时钟管理
  • User: zhangflink is not allowed to impersonate zhangflink
  • 深入理解Sentinel系列-1.初识Sentinel
  • vue中字典的使用
  • AWS基于x86 vs Graviton(ARM)的RDS MySQL性能对比
  • ESP32 蓝牙音箱无法链接上电脑的解决:此项不起作用,请确保你的蓝牙设备仍可检测到
  • 会声会影2024软件还包含了视频教学以及模板素材
  • [Swift]RxSwift常见用法详解
  • 探索鸿蒙_ArkTs开发语言
  • 案例049:基于微信小程序的校园外卖平台设计与实现
  • 通过提示工程释放人工智能
  • 亚马逊云科技Serverless视频内容摘要提取方案
  • c语言:整数与浮点数在内存中的存储方式
  • dockerdesktop 导出镜像,导入镜像
  • 2-Django、Flask和Tornado三大主流框架对比
  • 【openssl】Window系统如何编译openssl
  • [leetcode 双指针]
  • Notepad++批量添加引号
  • HarmonyOS4.0从零开始的开发教程04 初识ArkTS开发语言(下)
  • Failed to connect to github.com port 443 after 21055 ms: Timed out