当前位置: 首页 > news >正文

【动手学深度学习】(六)权重衰退

文章目录

  • 一、理论知识
  • 二、代码实现
    • 2.1从零开始实现
    • 2.2简洁实现
  • 【相关总结】

主要解决过拟合

一、理论知识

1、使用均方范数作为硬性限制(不常用)
通过限制参数值的选择范围来控制模型容量
在这里插入图片描述
通常不限制偏移b
小的在这里插入图片描述意味着更强的正则项
使用均方范数作为柔性限制
对于每个在这里插入图片描述都可以找到在这里插入图片描述使得之前的目标函数等价于下面的:
在这里插入图片描述

可以通过拉格朗日乘子来证明
超参数在这里插入图片描述控制了正则项的重要程度

在这里插入图片描述
在这里插入图片描述
参数更新法则
在这里插入图片描述
总结:

  • 权重衰退通过L2正则项使得模型参数不会过大,从而控制模型复杂度
  • 正则项权重是控制模型复杂度的超参数

二、代码实现

权重衰减是最广泛使用的正则化技术之一
1.首先,人工生成数据
在这里插入图片描述
我们选择标签是关于输入的线性函数。 标签同时被均值为0,标准差为0.01高斯噪声破坏。 为了使过拟合的效果更加明显,我们可以将问题的维数增加到, 并使用一个只包含20个样本的小训练集。

%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
# print(torch.ones((num_inputs, 1)))
# print(true_w)
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
# print(train_iter)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)

2.1从零开始实现

只需将的平方惩罚添加到原始目标函数中。

def init_params():w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)b = torch.zeros(1, requires_grad=True)return [w,b]

定义L2范数惩罚

def l2_penalty(w):return torch.sum(w.pow(2)) / 2

定义训练代码

def train(lambd):w,b = init_params()net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_lossnum_epochs, lr = 100, 0.003animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',xlim=[5,num_epochs], legend=['train', 'test'])for epoch in range(num_epochs):for X, y in train_iter:
#             增加了L2范数惩罚项
# 广播机制使l2_penalty(w)成为一个长度为torch_size的向量l = loss(net(X), y) + lambd * l2_penalty(w)l.sum().backward()d2l.sgd([w,b], lr, batch_size)if(epoch + 1) % 5 == 0:animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),d2l.evaluate_loss(net, test_iter, loss)))print('w的L2范数是:',torch.norm(w).item())

忽略正则化直接训练
用lambd = 0禁用权重衰减

train(lambd=0)

w的L2范数是: 13.702591896057129
在这里插入图片描述
使用权重衰退

train(lambd=3)

w的L2范数是: 0.36873573064804077
在这里插入图片描述

2.2简洁实现

在实例化优化器时直接通过weight_decay指定weight decay超参数

def train_concise(wd):net = nn.Sequential(nn.Linear(num_inputs, 1))for param in net.parameters():param.data.normal_()loss = nn.MSELoss(reduction='none')num_epochs, lr = 100, 0.003# 偏置参数没有衰减trainer = torch.optim.SGD([{"params":net[0].weight,'weight_decay': wd},{"params":net[0].bias}], lr=lr)animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',xlim=[5, num_epochs], legend=['train', 'test'])for epoch in range(num_epochs):for X, y in train_iter:trainer.zero_grad()l = loss(net(X), y)l.mean().backward()trainer.step()if (epoch + 1) % 5 == 0:animator.add(epoch + 1,(d2l.evaluate_loss(net, train_iter, loss),d2l.evaluate_loss(net, test_iter, loss)))print('w的L2范数:', net[0].weight.norm().item())
train_concise(0)

w的L2范数: 12.619434356689453
在这里插入图片描述

train_concise(3)

w的L2范数: 0.3909929692745209
在这里插入图片描述

【相关总结】

http://www.lryc.cn/news/253972.html

相关文章:

  • 动手学习深度学习-跟李沐学AI-自学笔记(3)
  • 3.2 Puppet 和 Chef 的比较与应用
  • promise使用示例
  • 一起学docker系列之十四Dockerfile微服务实践
  • Qt Creator 11.0.3同时使用Qt6.5和Qt5.14.2
  • Python中字符串列表的相互转换详解
  • 09、pytest多种调用方式
  • 分布式锁常见实现方案
  • 26、pytest使用allure解读
  • Uncle Maker: (Time)Stamping Out The Competition in Ethereum
  • 浅谈可重入与线程安全
  • 深入理解TDD(测试驱动开发):提升代码质量的利器
  • pyqt5使用pyqtgraph实现动态热力图
  • 【android开发-16】android中文件和sharedpreferences数据存储详解
  • 《当代家庭教育》期刊论文投稿发表简介
  • 【操作教程】如何将外省医保转入广州市区(医保转移接续手续办理)?
  • 【分布式系统学习】CAP原理详解
  • 【聚类】K-modes和K-prototypes——适合离散数据的聚类方法
  • Python-炸弹人【附完整源码】
  • [英语学习][5][Word Power Made Easy]的精读与翻译优化
  • Apache Doris 详细教程(一)
  • 【Vue3从入门到项目实现】RuoYi-Vue3若依框架前端学习——登录页面
  • win11 关闭快速启动,解决重启后部分应用没有关闭的问题
  • python爬虫-某公开数据网站实例小记
  • 还记得当初自己为什么选择计算机?
  • “数”说新语向未来 | GBASE南大通用2023媒体交流会成功举办
  • 每天一点python——day88
  • xShell快捷键
  • OkGo导入失败解决办法
  • 02、pytest环境准备