当前位置: 首页 > news >正文

数据结构 | 二叉树的各种遍历

数据结构 | 二叉树的各种遍历

文章目录

  • 数据结构 | 二叉树的各种遍历
    • 创建节点 && 创建树
    • 二叉树的前中后序遍历
    • 二叉树节点个数
    • 二叉树叶子节点个数
    • 二叉树第k层节点个数
    • 二叉树查找值为x的节点
    • 二叉树求树的高度
    • 二叉树的层序遍历
    • 判断二叉树是否是完全二叉树

我们本章来实现二叉树的这些功能

Tree.h

#pragma once#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
typedef int BTDataType;typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;//创建节点
BTNode* BuyTreeNode(int x);
//创建树
BTNode* CreateTree();
// 二叉树销毁
void BinaryTreeDestory(BTNode* root);
// 二叉树节点个数
int BinaryTreeSize(BTNode* root);
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root);
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k);
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root);
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root);
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root);
// 层序遍历
void BinaryTreeLevelOrder(BTNode* root);
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root);
// 求树的高度
int TreeHeight(BTNode* root);
  • 我们先来几个简单的

创建节点 && 创建树

  • 直接手动个创建即可,很简单~~
//创建节点
BTNode* BuyTreeNode(int x)
{BTNode* root = (BTNode*)malloc(sizeof(BTNode));if (root == NULL){perror("malloc fail\n");exit(-1);}root->data = x;root->left = NULL;root->right = NULL;return root;
}
//创建树
BTNode* CreateTree()
{BTNode* node1 = BuyTreeNode(1);BTNode* node2 = BuyTreeNode(2);BTNode* node3 = BuyTreeNode(3);BTNode* node4 = BuyTreeNode(4);BTNode* node5 = BuyTreeNode(5);BTNode* node6 = BuyTreeNode(6);BTNode* node7 = BuyTreeNode(7);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;node5->right = node7;return node1;
}

二叉树的前中后序遍历

  • 这里也是很简单,也可以看做下图这样遍历,或者画一下递归展开图

在这里插入图片描述

// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}printf("%d ", root->data);BinaryTreePrevOrder(root->left);BinaryTreePrevOrder(root->right);
}
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}BinaryTreeInOrder(root->left);printf("%d ", root->data);BinaryTreeInOrder(root->right);
}
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}BinaryTreePostOrder(root->left);BinaryTreePostOrder(root->right);printf("%d ", root->data);
}

二叉树节点个数

  • 我们这里看一下递归展开图

在这里插入图片描述

int BinaryTreeSize(BTNode* root)
{return root == NULL ? 0 : BinaryTreeSize(root->left)+ BinaryTreeSize(root->right);
}

二叉树叶子节点个数

  • 为空就返回0
  • 不是空,是叶子,返回1
  • 不是空,也不是叶子,就递归左子树和右子树
int BinaryTreeLeafSize(BTNode* root)
{// 为空返回0if (root == NULL)return 0;//不是空,是叶子 返回1if (root->left == NULL && root->right == NULL)return 1;// 不是空 也不是叶子  分治=左右子树叶子之和return BinaryTreeLeafSize(root->left)+ BinaryTreeLeafSize(root->right);
}

二叉树第k层节点个数

  • k是1的时候就是一层,就返回1
  • 递归左子树加右子树,每次递归k-1
int BinaryTreeLevelKSize(BTNode* root, int k)
{if (root == NULL)return NULL;if (k == 1)return 1;//递归左子树加右子树,每次递归k-1return BinaryTreeLevelKSize(root->left, k - 1)+ BinaryTreeLevelKSize(root->right, k - 1);
}

二叉树查找值为x的节点

  • 先看根节点是不是要找的
  • 然后递归左子树和右子树
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{if (root == NULL)return NULL;//根if (root->data == x)return root;//左子树BTNode* ret1 = BinaryTreeFind(root->left, x);if (ret1)return ret1;//右子树BTNode* ret2 = BinaryTreeFind(root->right, x);if (ret2)return ret2;return NULL;
}

二叉树求树的高度

  • 遍历左子树和右子树(每次遍历都要保存值)
  • 返回最高的那个子树然后加1(根)
int TreeHeight(BTNode* root)
{if (root == NULL)return NULL;//遍历左子树和右子树int left = TreeHeight(root->left);int right = TreeHeight(root->right);//返回最高的那个子树然后加1(根)return left > right ? left + 1 : right + 1;
}

二叉树的层序遍历

  • 这里的这个层序遍历就需要用到我们之前学过的队列了~~
  • 这里用法是入根(root),然后带孩子节点
void BinaryTreeLevelOrder(BTNode* root)
{Queue q;QueueInit(&q);//先入根if (root)QueuePush(&q, root);while (!QueueEmpty(&q)){//取队头的数据BTNode* front = QueueFront(&q);QueuePop(&q);//打印数据printf("%d ", front->data);//将左子树和右子树代入进队列if (front->left)QueuePush(&q, front->left);if (front->right)QueuePush(&q, front->right);}printf("\n");QueueDestroy(&q);
}
  • 那如果要一层一层的打印,代码改怎么改呢?
  • 一层一层的带,一层一层的出
// 层序遍历(一层一层的打印)
void _BinaryTreeLevelOrder(BTNode* root)
{Queue q;QueueInit(&q);//先入根if (root)QueuePush(&q, root);int leveSize = 1;while (!QueueEmpty(&q)){while (leveSize--){//取队头的数据BTNode* front = QueueFront(&q);QueuePop(&q);printf("%d ", front->data);if (front->left)QueuePush(&q, front->left);if (front->right)QueuePush(&q, front->right);}printf("\n");leveSize = QueueSize(&q);}QueueDestroy(&q);
}

判断二叉树是否是完全二叉树

  • 和上面的代码基本一样,取数据如果遇到空就跳出
  • 如果前面遇到空以后,后面还有非空就不是完全二叉树
// 判断二叉树是否是完全二叉树
bool BinaryTreeComplete(BTNode* root)
{Queue q;QueueInit(&q);//先入根if (root)QueuePush(&q, root);while (!QueueEmpty(&q)){// 取队头的数据BTNode* front = QueueFront(&q);QueuePop(&q);//等于空了就跳出,然后检查后面还有节点没有if (front == NULL)break;// 将左子树和右子树代入进队列QueuePush(&q, front->left);QueuePush(&q, front->right);}// 前面遇到空以后,后面还有非空就不是完全二叉树while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);// 如果是不是空就 return false;if (front){QueueDestroy(&q);return false;}}QueueDestroy(&q);return true;
}
http://www.lryc.cn/news/253799.html

相关文章:

  • Python-赋值运算符(详解)
  • 算法工程师面试八股(搜广推方向)
  • 学习TypeScrip4(数组类型)
  • Python文件打包成exe可执行文件
  • Android : SQLite 增删改查—简单应用
  • 【蓝桥杯】马的遍历
  • 导入JSON到xmind
  • DataGrip 2023.2.3(IDE数据库开发)
  • 身为 Go 程序员,我为啥更喜欢用 Zig?
  • Amazon CodeWhisperer 使用体验
  • 公众号留言功能怎么申请?
  • 探索三种生成模型:基于DDPMs、NCSNs和SDEs方法的Diffusion
  • Linux随记(七)
  • RESTful API,以及如何使用它构建 web 应用程序。
  • 【华为OD题库-075】拼接URL-Java
  • 【Unity动画】为一个动画片段添加事件Events
  • CoDeF视频处理——视频风格转化部署使用与源码解析
  • ubuntu server 20.04 备份和恢复 系统 LTS
  • NFC对物联网开发的影响及用途
  • 企业级SQL开发:如何审核发布到生产环境的SQL性能
  • linux 手动安装移植 haveged,解决随机数初始化慢的问题
  • 如何使用llm 制作多模态
  • k8s(二):Pod
  • Python 字典详解(dict)
  • IPoIB在国产并行系统上的实现与优化
  • 东南大学与OpenHarmony携手共建开源生态,技术俱乐部揭牌成立并迎来TSC专家进校园
  • NPU、CPU、GPU算力及算力计算方式
  • 华清远见嵌入式学习——C++——作业6
  • k8s安装学习环境
  • RepidJson将内容写入文件简单代码示例