当前位置: 首页 > news >正文

Homework 3: Higher-Order Functions, Self Reference, Recursion, Tree Recursion

Q1: Compose

编写一个高阶函数composer,它返回两个函数funcfunc_adder。 func是一个单参数函数,它应用到目前为止已经组合的所有函数。这些函数将首先应用最新的函数(参见doctests和示例)。 func_adder用于向我们的组合添加更多函数,当调用另一个函数g时,func_adder应该返回一个新的func和一个新的func_adder

如果没有参数传入composer,则返回的func是恒等函数。

举例来说:

>>> add_one = lambda x: x + 1
>>> square = lambda x: x * x
>>> times_two = lambda x: x + x>>> f1, func_adder = composer()
>>> f1(1)
1>>> f2, func_adder = func_adder(add_one)
>>> f2(1)
2   # 1 + 1>>> f3, func_adder = func_adder(square)
>>> f3(3)
10  # 1 + (3**2)>>> f4, func_adder = func_adder(times_two)
>>> f4(3)
37  # 1 + ((2 * 3) **2)

提示:你的func_adder应该返回两个参数func和 func_adder.

我们知道什么函数返回funcfunc_adder

(这个提示真的神来之笔:由于compose返回

func

func_adder这两个函数

所以func_adder应该是以新func为形参的compose函数

(func    =         lambda x:func(g(x))       

g(x)作为原函数的参数x        逐级嵌套 )如图:

def composer(func=lambda x: x):"""Returns two functions -one holding the composed function so far, and anotherthat can create further composed problems.>>> add_one = lambda x: x + 1>>> mul_two = lambda x: x * 2>>> f, func_adder = composer()>>> f1, func_adder = func_adder(add_one)>>> f1(3)4>>> f2, func_adder = func_adder(mul_two)>>> f2(3) # should be 1 + (2*3) = 77>>> f3, func_adder = func_adder(add_one)>>> f3(3) # should be 1 + (2 * (3 + 1)) = 99"""def func_adder(g):"*** YOUR CODE HERE ***"return  composer(lambda x:func(g(x)))return func, func_adder

pass:

PS D:\pycharm\python document\CS61A class homework\hw03> python3 ok -q composer
=====================================================================
Assignment: Homework 3
OK, version v1.18.1
=====================================================================~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Running tests---------------------------------------------------------------------
Test summary1 test cases passed! No cases failed.

Q4: Count change

Once the machines take over, the denomination of every coin will be a power of two: 1-cent, 2-cent, 4-cent, 8-cent, 16-cent, etc. There will be no limit to how much a coin can be worth.

Given a positive integer total, a set of coins makes change for total if the sum of the values of the coins is total. For example, the following sets make change for 7:

  • 7 1-cent coins
  • 5 1-cent, 1 2-cent coins
  • 3 1-cent, 2 2-cent coins
  • 3 1-cent, 1 4-cent coins
  • 1 1-cent, 3 2-cent coins
  • 1 1-cent, 1 2-cent, 1 4-cent coins

Thus, there are 6 ways to make change for 7. Write a recursive function count_change that takes a positive integer total and returns the number of ways to make change for total using these coins of the future.

Hint: Refer the implementation of count_partitions for an example of how to count the ways to sum up to a total with smaller parts. If you need to keep track of more than one value across recursive calls, consider writing a helper function.

分析:作者把此题核心分为两个函数

divide函数:

作用:

求 对于total 满足1------小于total的最大2的倍数 面值美分  的排列种类

核心:

将一种情况分为两种情况即:

当前有最大数的排列数量        和        无当前最大数的数量

举个例子如图(函数实现过程):

max1:

求的是 小于total的最大2的倍数

def divide(total,num):if num==1:return 1if total<num:return divide(total,num/2)return divide(total-num,num)+divide(total,num/2)def max1(total):if total<=1:return 1if total>0:return max1(total//2)*2
def count_change(total):"""Return the number of ways to make change for total.>>> count_change(7)6>>> count_change(10)14>>> count_change(20)60>>> count_change(100)9828>>> from construct_check import check>>> # ban iteration>>> check(HW_SOURCE_FILE, 'count_change', ['While', 'For'])True""""*** YOUR CODE HERE ***"if total==1:return 1return divide(total,max1(total))

pass结果:

PS D:\pycharm\python document\CS61A class homework\hw03> python3 ok -q count_change
=====================================================================
Assignment: Homework 3
OK, version v1.18.1
=====================================================================~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Running tests---------------------------------------------------------------------
Test summary1 test cases passed! No cases failed.

Q5: Towers of Hanoi

一个经典的难题称为塔的河内是一个游戏,包括三个 杆和许多不同尺寸的圆盘,圆盘可以在任何杆上滑动。 这个谜题从n磁盘开始,磁盘按照大小的升序整齐地堆叠在一起, start棒,顶部最小,形成圆锥形。

拼图的目的是将整个堆叠移动到end杆, 遵守以下规则:

  • 一次只能移动一个磁盘。
  • 每次移动包括从其中一根杆上取下顶部(最小)的圆盘, 把它滑到另一个杆上,在其他可能已经被 存在于该杆上。
  • 不能将磁盘放在较小磁盘的顶部。

完成move_stack的定义,它将打印出执行以下操作所需的步骤: 将n盘从start棒移动到end棒,不违反 规则提供的print_move函数将打印出移动 从给定的origin到给定的destination的单个磁盘。

提示:在一张纸上画出几个带有各种n的游戏,并尝试 找到一个适用于任何n的磁盘运动模式。在你的解决方案中, 当你需要移动任何数量的 小于n的圆盘从一个棒到另一个棒。如果你需要更多帮助, 以下提示。

 分析:

核心:拆分思想(动态规划dp)

对于n个盘子需要从起点到终点的问题可以转化为

1.将n个盘子需要从起点到非起点或终点,

2.第n个盘子从起点到终点

3.再将n-1盘子放到终点的过程

(1)其中对于n==2的情况(即递归终点)需要模拟出相应过程

注意:n==1需要额外说明

如图所示:

def print_move(origin, destination):"""Print instructions to move a disk."""print("Move the top disk from rod", origin, "to rod", destination)def move_stack(n, start, end):"""Print the moves required to move n disks on the start pole to the endpole without violating the rules of Towers of Hanoi.n -- number of disksstart -- a pole position, either 1, 2, or 3end -- a pole position, either 1, 2, or 3There are exactly three poles, and start and end must be different. Assumethat the start pole has at least n disks of increasing size, and the endpole is either empty or has a top disk larger than the top n start disks.>>> move_stack(1, 1, 3)Move the top disk from rod 1 to rod 3>>> move_stack(2, 1, 3)Move the top disk from rod 1 to rod 2Move the top disk from rod 1 to rod 3Move the top disk from rod 2 to rod 3>>> move_stack(3, 1, 3)Move the top disk from rod 1 to rod 3Move the top disk from rod 1 to rod 2Move the top disk from rod 3 to rod 2Move the top disk from rod 1 to rod 3Move the top disk from rod 2 to rod 1Move the top disk from rod 2 to rod 3Move the top disk from rod 1 to rod 3"""assert 1 <= start <= 3 and 1 <= end <= 3 and start != end, "Bad start/end""*** YOUR CODE HERE ***"n_s=0if 1!=start and 1!=end:n_s=1if 2!=start and 2!=end:n_s=2if 3!=start and 3!=end:n_s=3if n==1:print_move(start,end)returnif n==2:print_move(start,n_s)print_move(start,end)print_move(n_s,end)returnmove_stack(n-1,start,n_s)print_move(start,end)move_stack(n-1,n_s,end)

pass情况:

PS D:\pycharm\python document\CS61A class homework\hw03> python3 ok -q move_stack
=====================================================================
Assignment: Homework 3
OK, version v1.18.1
=====================================================================~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Running tests---------------------------------------------------------------------
Test summary1 test cases passed! No cases failed.

http://www.lryc.cn/news/253093.html

相关文章:

  • (C++)有效三角形的个数--双指针法
  • 11.30BST理解,AVL树操作,定义;快速幂,二分求矩阵幂(未完)
  • 深入理解Java核心技术:Java工程师的实用干货笔记
  • 大学里面转专业介绍
  • MySQL_1. mysql数据库介绍
  • TimeGPT:时间序列预测模型实例
  • 【JavaEE】多线程 (1)
  • linux 应用层同步与互斥机制之条件变量
  • 3.5毫米音频连接器接线方式
  • 智慧农田可视化大数据综合管理平台方案,EasyCVR助力农业高质量发展
  • python超详细基础文件操作【建议收藏】
  • 华为变革进展指数TPM的五​个级别:试点级、推行级、功能级、集成级和世界级
  • vue el-select多选封装及使用
  • 大模型上下文学习(ICL)训练和推理两个阶段31篇论文
  • WordPress(安装比子主题文件)zibll-7.5.1
  • 蓝桥杯 动态规划
  • 【图论】重庆大学图论与应用课程期末复习资料2-各章考点(计算部分)(私人复习资料)
  • 整数和浮点数在内存中的存储​(大小端详解)
  • SpringBoot 集成 ChatGPT,实战附源码
  • 数据结构——希尔排序(详解)
  • C++ day53 最长公共子序列 不相交的线 最大子序和
  • ubuntu中删除镜像和容器、ubuntu20.04配置静态ip
  • 华为手环 8 五款免费表盘已上线,请注意查收
  • JOSEF约瑟 同步检查继电器DT-13/200 100V柜内安装,板前接线
  • 龙迅#LT8311X3 USB中继器应用描述!
  • eclipse jee中 如何建立动态网页及服务的设置问题
  • 一张网页截图,AI帮你写前端代码,前端窃喜,终于不用干体力活了
  • 处理k8s中创建ingress失败
  • Redis高可用集群架构
  • JAVA常见问题解答:解决Java 11新特性兼容性问题的六个步骤