当前位置: 首页 > news >正文

LeetCode-470. 用 Rand7() 实现 Rand10()【数学 拒绝采样 概率与统计 随机化】

LeetCode-470. 用 Rand7 实现 Rand10【数学 拒绝采样 概率与统计 随机化】

  • 题目描述:
  • 解题思路一:首先说一个结论就是`(rand_X() - 1) × Y + rand_Y() ==> [1,X*Y]`,即可以等概率的生成[1, X * Y]范围的随机数,其实就像军训的时候报数,Y是每一行的人数,X是列数【参考下面的图】。第二就是拒绝采样,效果是能够减少调用rand7()的调用次数。我们在利用`(rand_7() - 1) × 7 + rand_7() ==> [1,7*7]`得到rand49()的时候,我们希望能够等概率的生成[1,10]的随机数,那么可以拒绝掉大于40的数。即`if num<=40:`才进行采样。
  • 解题思路二:0
  • 解题思路三:0

题目描述:

给定方法 rand7 可生成 [1,7] 范围内的均匀随机整数,试写一个方法 rand10 生成 [1,10] 范围内的均匀随机整数。

你只能调用 rand7() 且不能调用其他方法。请不要使用系统的 Math.random() 方法。

每个测试用例将有一个内部参数 n,即你实现的函数 rand10() 在测试时将被调用的次数。请注意,这不是传递给 rand10() 的参数。

示例 1:
输入: 1
输出: [2]

示例 2:
输入: 2
输出: [2,8]

示例 3:
输入: 3
输出: [3,8,10]

提示:
1 <= n <= 105

进阶:
rand7()调用次数的 期望值 是多少 ?
你能否尽量少调用 rand7() ?

解题思路一:首先说一个结论就是(rand_X() - 1) × Y + rand_Y() ==> [1,X*Y],即可以等概率的生成[1, X * Y]范围的随机数,其实就像军训的时候报数,Y是每一行的人数,X是列数【参考下面的图】。第二就是拒绝采样,效果是能够减少调用rand7()的调用次数。我们在利用(rand_7() - 1) × 7 + rand_7() ==> [1,7*7]得到rand49()的时候,我们希望能够等概率的生成[1,10]的随机数,那么可以拒绝掉大于40的数。即if num<=40:才进行采样。

请添加图片描述
为了充分利用被拒绝的采样结果,即舍弃掉[41, 49]这9个数。我们可以使用a = num - 40得到rand9,从而可以得到(rand_9() - 1) × 7 + rand_7() ==> [1,9*7]得到rand63,从而对rand63进行采样。这样之后的就不难理解了。

# The rand7() API is already defined for you.
# def rand7():
# @return a random integer in the range 1 to 7class Solution:def rand10(self):""":rtype: int"""while True:a = rand7()b = rand7()num = (a-1)*7 + b # rand49if num<=40:return num%10 + 1a = num - 40 # rand9b = rand7()num = (a-1)*7 + b # rand63if num<=60:return num%10 + 1a = num - 60 # rand3b = rand7()num = (a-1)*7 + b # rand21if num<=20:return num%10 + 1

时间复杂度:期望时间复杂度为O(1),但最坏情况下会达到 (∞)(一直被拒绝)。
空间复杂度:O(1)
分析一下rand7()调用次数的 期望值:
首先调用2次得到a,b
然后拒绝采样一次概率是9/49
第二次是9/49 * 3/63
第三次是9/49 * 3/63 * 1/21就是进入下一轮while循环了。所以是一个等比数列。
a = 2 + 9 49 + 9 49 ⋅ 3 63 / / 是每次采样成功的概率 b = 9 49 ⋅ 3 63 ⋅ 1 21 / / 是每次进入下一轮循环的概率(等比数列的公比) E ( # c a l l ) = a ⋅ 1 1 − b ≈ 2.19333 \begin{align} a &= 2 + \frac{9}{49}+\frac{9}{49}·\frac{3}{63} \quad // \text{是每次采样成功的概率} \notag \\ b &= \frac{9}{49}·\frac{3}{63}·\frac{1}{21} \quad // \text {是每次进入下一轮循环的概率(等比数列的公比)} \notag \\ E(\#call) &= a·\frac{1}{1-b} \notag \\ &\approx 2.19333 \end{align} abE(#call)=2+499+499633//是每次采样成功的概率=499633211//是每次进入下一轮循环的概率(等比数列的公比)=a1b12.19333
所以期望次数是2.19332

解题思路二:0


解题思路三:0


http://www.lryc.cn/news/252990.html

相关文章:

  • 通达信指标公式19:龙虎榜股票池——主力控盘度的计算方法
  • 手搓图片滑动验证码_JavaScript进阶
  • Linux服务器超级实用的脚本
  • IntelliJ IDEA安装使用教程#intellij idea
  • 【组合数学】容斥鸽巢原理
  • 视频后期特效处理软件 Motion 5 mac中文版
  • 【智能家居】一、工厂模式实现继电器灯控制
  • 第三节:提供者、消费者、Eureka
  • Leetcode刷题详解——等差数列划分
  • 导出主机上所有docker 镜像并导入到其它主机
  • HTML5+CSS3+JS小实例:焦点图波浪切换动画特效
  • Mac电脑如何安装git
  • macOS本地调试k8s源码
  • JS 实现一键复制文本内容
  • 【Linux】echo命令使用
  • Day03 嵌入式---中断
  • wpf devexpress 使用IDataErrorInfo实现input验证
  • shell_81.Linux在命令行中创建使用函数
  • 鱼香ROS一键安装命令(支持微信、docker、ros等)
  • 深入理解 Go 函数:从基础到高级
  • 开启三层交换机DHCP服务
  • jspdf+html2canvas浏览器缩放问题
  • 西南科技大学模拟电子技术实验六(BJT电压串联负反馈放大电路)预习报告
  • JS的监听事件
  • JS Object.values()
  • 基于Java SSM人力资源管理系统
  • 人工智能和程序员
  • Unity优化篇:对于unity DrawCall/Mesh/纹理压缩/内存等方面的常规调试和优化手段
  • 学生信息管理系统
  • 纯代码压缩WordPress前端Html