当前位置: 首页 > news >正文

Spark-06:Spark 共享变量

目录

1.广播变量(broadcast variables)

2.累加器(accumulators)


      在分布式计算中,当在集群的多个节点上并行运行函数时,默认情况下,每个任务都会获得函数中使用到的变量的一个副本。如果变量很大,这会导致网络传输占用大量带宽,并且在每个节点上都占用大量内存空间。为了解决这个问题,Spark引入了共享变量的概念。

        共享变量允许在多个任务之间共享数据,而不是为每个任务分别复制一份变量。这样可以显著降低网络传输的开销和内存占用。Spark提供了两种类型的共享变量:广播变量(broadcast variables)和累加器(accumulators)。

1.广播变量(broadcast variables)

        通常情况下,Spark程序运行时,通常会将数据以副本的形式分发到每个执行器(Executor)的任务(Task)中,但当变量较大时,这会导致大量的内存和网络开销。通过使用广播变量,Spark将变量只发送一次到每个节点,并在多个任务之间共享这个副本,从而显著降低了内存占用和网络传输的开销。

Scala 实现:

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)scala> broadcastVar.value
res0: Array[Int] = Array(1, 2, 3)

Java 实现:

Broadcast<int[]> broadcastVar = sc.broadcast(new int[] {1, 2, 3});broadcastVar.value();
// returns [1, 2, 3]

2.累加器(accumulators)

        累加器是Spark中的一种特殊类型的共享变量,主要用来把Executor端变量信息聚合到Driver端。在Driver程序中定义的变量,在Executor端的每个task都会得到这个变量的一份新的副本,每个task更新这些副本的值后,传回Driver端进行merge。累加器支持的数据类型仅限于数值类型,包括整数和浮点数等。

Scala 实现:

scala> val accum = sc.longAccumulator("My Accumulator")
accum: org.apache.spark.util.LongAccumulator = LongAccumulator(id: 0, name: Some(My Accumulator), value: 0)scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum.add(x))
...
10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 sscala> accum.value
res2: Long = 10

Java 实现:

LongAccumulator accum = jsc.sc().longAccumulator();sc.parallelize(Arrays.asList(1, 2, 3, 4)).foreach(x -> accum.add(x));
// ...
// 10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 saccum.value();
// returns 10

        内置累加器功能有限,但可以通过继承AccumulatorV2来创建自己的类型。AccumulatorV2抽象类有几个方法必须重写:reset用于将累加器重置为零,add用于向累加器中添加另一个值,merge用于将另一个相同类型的累加器合并到此累加器。

自定义累加器Scala实现:

package com.yichenkeji.demo.sparkscalaimport org.apache.spark.util.AccumulatorV2class CustomAccumulator extends AccumulatorV2[Int, Int]{//初始化累加器的值private var sum = 0override def isZero: Boolean = sum == 0override def copy(): AccumulatorV2[Int, Int] = {val newAcc = new CustomAccumulator()newAcc.sum = sumnewAcc}override def reset(): Unit = sum = 0override def add(v: Int): Unit = sum += voverride def merge(other: AccumulatorV2[Int, Int]): Unit = sum += other.valueoverride def value: Int = sum
}

自定义累加器Java实现:

package com.yichenkeji.demo.sparkjava;import org.apache.spark.util.AccumulatorV2;public class CustomAccumulator extends AccumulatorV2<Integer, Integer> {// 初始化累加器的值private Integer sum = 0;@Overridepublic boolean isZero() {return sum == 0;}@Overridepublic AccumulatorV2<Integer, Integer> copy() {CustomAccumulator customAccumulator = new CustomAccumulator();customAccumulator.sum = this.sum;return customAccumulator;}@Overridepublic void reset() {this.sum = 0;}@Overridepublic void add(Integer v) {this.sum += v;}@Overridepublic void merge(AccumulatorV2<Integer, Integer> other) {this.sum += ((CustomAccumulator) other).sum;}@Overridepublic Integer value() {return sum;}
}

自定义累加器的使用:

package com.yichenkeji.demo.sparkjava;import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;import java.util.Arrays;
import java.util.List;public class AccumulatorTest {public static void main(String[] args) {//1.初始化SparkContext对象SparkConf sparkConf = new SparkConf().setAppName("Spark Java").setMaster("local[*]");JavaSparkContext sc = new JavaSparkContext(sparkConf);CustomAccumulator customAccumulator = new CustomAccumulator();//注册自定义累加器才能使用sc.sc().register(customAccumulator);sc.parallelize(Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)).foreach(x -> customAccumulator.add(x));System.out.println(customAccumulator.value());//5.停止SparkContextsc.stop();}
}

http://www.lryc.cn/news/249535.html

相关文章:

  • Spring整合web环境
  • 分享从零开始学习网络设备配置--任务4.3 使用动态路由RIPng实现网络连通
  • vue2.0+elementui集成file-loader之后图标失效问题
  • C# 文件帮助类(FileHelper)
  • WordPress 外链跳转插件
  • 算法的10大排序
  • “十道机器学习问题,帮助你了解基础知识和常见算法“
  • 部署WAF安全应用防火墙(openresty部署)
  • yml转properties工具
  • zerotier 搭建 moon中转服务器 及 自建planet
  • 深入了解Rabbit加密技术:原理、实现与应用
  • Linux常用命令——mv命令
  • Panalog 日志审计系统 前台RCE漏洞复现
  • Android设置文字颜色渐变
  • java基础面试题(二)
  • php爬虫实现把目标页面变成自己的网站页面
  • [c语言c++]手写你自己的swap交换函数
  • 技术类知识汇总(二)
  • 简单好用!日常写给 ChatGPT 的几个提示词技巧
  • pytorch分布式训练
  • 【PyTorch】(三)模型的创建、参数初始化、保存和加载
  • 高效开发之:判断复杂list中的对象属性是否包含某个值
  • MacOS + Android Studio 通过 USB 数据线真机调试
  • 部署jekins遇到的问题
  • SQLY优化
  • 设计模式——行为型模式(一)
  • Rust语言入门教程(六) - 字符串类型
  • 【MATLAB源码-第92期】基于simulink的QPSK调制解调仿真,采用相干解调对比原始信号和解调信号。
  • 关于C语言控制浮点数输出精度问题
  • 【Linux 静态IP配置】