当前位置: 首页 > news >正文

机器学习算法原理——逻辑斯谛回归

文章目录

      • 逻辑斯谛回归
      • 二项逻辑斯谛回归模型
      • 极大似然估计
      • 多项逻辑斯谛回归模型
      • 总结归纳

逻辑斯谛回归

写在前面:逻辑斯谛回归最初是数学家 Verhulst 用来研究人口增长是所发现的,是一个非常有趣的发现过程, b 站有更详细的背景及过程推导,在此不再赘述:https://www.bilibili.com/video/BV1No4y1o7ac/?p=59

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-k9DMmgs6-1677676936475)(逻辑斯谛回归.assets/image-20230301153119470.png)]

逻辑斯谛分布的标准形式:
F(x)=11+e−xF(x) = \frac{1}{1 + e^{-x}} F(x)=1+ex1

f(x)=e−x(1+e−x)2f(x) = \frac{e^{-x}}{(1 + e^{-x})^2} f(x)=(1+ex)2ex

  • 分布函数是一条 SSS 形曲线,该曲线也被称为 sigmoid 曲线,关于点 (0,12)(0,\frac{1}{2})(0,21) 中心对称。
  • 概率密度函数一条钟型曲线,中间高两端低,关于 x=0x = 0x=0 对称,在此处取得最大值 (人口增速最大时刻)。

逻辑斯谛回归的一般形式:

X\rm XX 是连续随机变量, X\rm XX 服从逻辑斯谛分布是指 X\rm XX 具有下列分布函数和概率密度:
F(x)=P(X⩽x)=11+e−(x−μ)/γF(x)=P(X\leqslant x)={\frac{1}{1+\mathrm{{e}}^{-(x-\mu)/\gamma}}}\\ F(x)=P(Xx)=1+e(xμ)/γ1

f(x)=F′(x)=e−(x−μ)/γγ(1+e−(x−μ)/γ)2f(x)=F^{\prime}(x)={\frac{\mathrm{e}^{-(x-\mu)/\gamma}}{\gamma(1+\mathrm{e}^{-(x-\mu)/\gamma})^{2}}} f(x)=F(x)=γ(1+e(xμ)/γ)2e(xμ)/γ

式中, μ\muμ 为位置参数, γ>0\gamma > 0γ>0 为形式参数。

  • 分布函数是一条 SSS 形曲线,该曲线也被称为 sigmoid 曲线,关于点 (μ,12)(\mu,\frac{1}{2})(μ,21) 中心对称。
  • 概率密度函数一条钟型曲线,中间高两端低,关于 x=μx = \mux=μ 对称,在此处取得最大值 14γ\frac{1}{4 \gamma}4γ1 (人口增速最大时刻)。

二项逻辑斯谛回归模型

P(Y=1∣x)=exp⁡(w⋅x+b)1+exp⁡(w⋅x+b)P(Y=1 \mid x)=\frac{\exp (w \cdot x+b)}{1+\exp (w \cdot x+b)} P(Y=1x)=1+exp(wx+b)exp(wx+b)

P(Y=0∣x)=11+exp⁡(w⋅x+b)P(Y=0 \mid x)=\frac{1}{1+\exp (w \cdot x+b)} P(Y=0x)=1+exp(wx+b)1

其中,x∈Rnx \in {\bf R^n}xRn 是输入,Y∈0,1Y \in {0,1}Y0,1 是输出,w∈Rnw \in {\bf R^n}wRnb∈Rnb \in {\bf R^n}bRn 是参数,www 称为权值向量,bbb 称为偏置,w⋅xw \cdot xwxxxxxxx 的内积。

为了方便,将权重向量和输入向量加以扩充,仍记为 wwwxxx ,则有:
ω=(ω(1),ω(2),⋯,ω(n),b)T,x=(x(1),x(2),⋯,x(n),1)T,\omega=\left(\omega^{(1)}, \omega^{(2)}, \cdots, \omega^{(n)}, b\right)^T, \quad \quad x=\left(x^{(1)}, x^{(2)}, \cdots, x^{(n)}, 1\right)^T, ω=(ω(1),ω(2),,ω(n),b)T,x=(x(1),x(2),,x(n),1)T,
逻辑分布函数重写为:
P(Y=1∣x)=ew⋅x1+ew⋅xP(Y=1 \mid x)=\frac{e^{w \cdot x}}{1 + e^{w \cdot x}} P(Y=1x)=1+ewxewx

P(Y=0∣x)=11+ew⋅xP(Y=0 \mid x)=\frac{1}{1 + e^{w \cdot x}} P(Y=0x)=1+ewx1

极大似然估计

二项分布:
P(Y)={1−p,Y=0p,Y=1=(1−p)1−YpYP(Y)=\left\{\begin{array}{ll} 1-p, & Y=0 \\ p, & Y=1 \end{array}=(1-p)^{1-Y} p^Y\right. P(Y)={1p,p,Y=0Y=1=(1p)1YpY
对于 (xi,yi)(x_i, y_i)(xi,yi) ,有:
P(Y=yi∣xi)=(1−pi)1−yipiyiP(Y = y_i | x_i) = (1 - p_i)^{1 - y_i} p_i^{y_i} P(Y=yixi)=(1pi)1yipiyi
其中:
pi=ew⋅xi1+ew⋅xi1−pi=11+ew⋅xi\begin{align} p_i = \frac{e^{w \cdot x_i}}{1 + e^{w \cdot x_i}}\\ 1 - p_i = \frac{1}{1 +e^{w \cdot x_i}} \end{align} pi=1+ewxiewxi1pi=1+ewxi1
对于数据集 T=(X1,y1),(x2,y2),⋯,(xN,yN)T = {(X_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)}T=(X1,y1),(x2,y2),,(xN,yN) 出现的概率:
∏i=1N(1−pi)1−yipiyi\prod_{i = 1}^N (1 - p_i)^{1 - y_i} p_i^{y_i} i=1N(1pi)1yipiyi
该概率只与 www 有关,即可得关于 www 的似然函数:
L(w)=∏i=1N(1−pi)1−yipiyiL(w) = \prod_{i = 1}^N (1 - p_i)^{1 - y_i} p_i^{y_i} L(w)=i=1N(1pi)1yipiyi
对数似然函数:
log⁡∏i=1Npiyi(1−pi)1−yi=∑i=1N[yilog⁡pi+(1−yi)log⁡(1−pi)]=∑i=1N[yilog⁡pi1−pi+log⁡(1−pi)]\begin{align} \log \prod_{i = 1}^{N} p_i^{y_i} (1 - p_i)^{1 - y_i} &= \sum_{i = 1}^{N}[y_i \log p_i + (1 - y_i) \log(1-p_i)]\\ &= \sum_{i = 1}^{N}[y_i \log \frac{p_i}{1 - p_i} + \log(1 - p_i)] \end{align} logi=1Npiyi(1pi)1yi=i=1N[yilogpi+(1yi)log(1pi)]=i=1N[yilog1pipi+log(1pi)]
代入(12)(13)式:
L(w)=∑i=1N[yiw⋅xi−log⁡(1+ew⋅xi)]L(w) = \sum_{i = 1}^{N}[y_i \ w \cdot x_i - \log(1 + e^{w \cdot x_i})] L(w)=i=1N[yi wxilog(1+ewxi)]
这样,问题就变成了以对数似然函数为目标函数的最优化问题,可以应用极大似然估计法估计模型参数,从而得到逻辑斯谛回归模型。逻辑斯谛回归学习中通常采用的方法是梯度下降法拟牛顿法

多项逻辑斯谛回归模型

二项逻辑斯谛回归模型可将其推广到多项逻辑斯谛回归模型(multi-nominal logistic regression model),用于多类分类。假设离散型随机变量 YYY 的取值集合是 1,2,⋯,K{1,2,\cdots, K}1,2,,K ,那么多项逻辑斯谛回归模型是:
P(Y=k∣x)=exp⁡(wk⋅x)1+∑k=1K−1exp⁡(wk⋅x),k=1,2,⋯,K−1P(Y=K∣x)=11+∑k=1K−1exp⁡(wk⋅x)\begin{align} P(Y&=k \mid x)=\frac{\exp \left(w_k \cdot x\right)}{1+\sum_{k=1}^{K-1} \exp \left(w_k \cdot x\right)}, \quad k=1,2, \cdots, K-1 \\ P(Y&=K \mid x)=\frac{1}{1+\sum_{k=1}^{K-1} \exp \left(w_k \cdot x\right)} \end{align} P(YP(Y=kx)=1+k=1K1exp(wkx)exp(wkx),k=1,2,,K1=Kx)=1+k=1K1exp(wkx)1
这里,x∈Rn+1x \in {\bf R^{n+1}}xRn+1wk∈Rn+1w_k \in {\bf R^{n+1}}wkRn+1

总结归纳

  • 逻辑斯谛回归归根结底是将分类问题用回归模型来解决。
  • 正态分布是在给定均值和方差的情况下具有最大熵的分布,这样的假设可以使得数据携带的信息量最大。通常在没有任何假设的情况下,连续型数据常被假设为正态分布,离散型数据常被假设为等概率分布。
  • P(Y=1∣x)+P(Y=0∣x)=1P(Y=1 \mid x) + P(Y=0 \mid x) = 1P(Y=1x)+P(Y=0x)=1
  • 逻辑斯谛回归学习中通常采用的方法是梯度下降法拟牛顿法
  • 逻辑回归模型不局限于输入变量和输出变量之间是否存在线性关系,可以通过 sigmoid 函数代替非连续型函数,当 sigmoid 函数大于等于 0.5时即可判断类别。
  • 逻辑回归的输入变量可以是连续变量,也可以是离散变量
  • 参数估计:说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。
  • 极大似然估计:极大似然估计就是建立在参数估计的思想上,已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。
  • sigmoid 激活函数在深度学习中应用广泛,逻辑斯谛回归更是在分类问题中被大量使用。
http://www.lryc.cn/news/24818.html

相关文章:

  • 【华为OD机试 】最优资源分配/芯片资源占用(C++ Java JavaScript Python)
  • 600 条最强 Linux 命令总结
  • python自学之《21天学通Python》(15)——第18章 数据结构基础
  • 从功能到自动化,熬夜3天整理出这一份2000字学习指南~
  • 客户端攻击(溯源攻击,获取客户端信息)
  • visual studio 2022 社区版 c# 环境搭建及安装使用【图文解析-小白版】
  • 21- 神经网络模型_超参数搜索 (TensorFlow系列) (深度学习)
  • 《NFL橄榄球》:芝加哥熊·橄榄1号位
  • 【ES】Elasticsearch核心基础概念:文档与索引
  • 实时手势识别(C++与python都可实现)
  • 15个Spring扩展点,一般人知道的不超过5个!
  • Elasticsearch:以 “Painless” 方式保护你的映射
  • js几种对象创建方式
  • 阿里云服务器ECS适用于哪些应用场景?
  • Ajax学习笔记01
  • Jinja2----------过滤器的使用、控制语句
  • 面试了1个自动化测试,开口40W年薪,只能说痴人做梦...
  • 冲鸭!33% 程序员月薪达到 5 万元以上~
  • 【RSA】HTTPS中SSL/TLS握手时RSA前后端加密流程
  • clion在linux设置桌面启动图标(jetbrains全家桶均适用)
  • Java数据结构LinkedList单链表和双链表模拟实现及相关OJ题秒AC总结知识点
  • 立创EDA 学习 day01 应用下载安装,基本使用的操作
  • 华为OD机试真题Python实现【火星文计算】真题+解题思路+代码(20222023)
  • yolov8 修改类别 自定义数据集
  • Linux环境下验证python项目
  • MAC开发使用技巧
  • 第三章-OpenCV基础-7-形态学
  • DeepFaceLab 中Ubuntu(docker gpu) 部署
  • 分析帆软填报报表点提交的逻辑
  • 【ROS学习笔记9】ROS常用API