当前位置: 首页 > news >正文

集成学习的两种常见策略:bagging VS. boosting

chatGPT回答,记在这里。

集成学习是一种通过组合多个弱学习器来构建一个更强大的学习器的方法。其中,bagging和boosting是两种常见的集成学习策略。

一、bagging & boosting 简介

  1. Bagging(自助聚集法):
    Bagging是一种并行的集成学习策略,它通过随机有放回地从原始训练集中抽取多个子样本集,并使用这些子样本集来训练多个基学习器。每个基学习器都是独立地训练,并且可以并行地进行。最后,通过对基学习器的预测结果进行投票或平均,来得到集成模型的最终预测结果。
    Bagging的主要思想是通过减少模型的方差来提高整体模型的稳定性和泛化能力。通过随机抽样和并行训练,Bagging能够减少模型对训练数据的过拟合程度,提高模型的鲁棒性。

常见的Bagging算法包括随机森林(Random Forest)和自适应增强(Adaptive Boosting)。

  1. Boosting(提升法):
    Boosting是一种串行的集成学习策略,它通过顺序地训练多个基学习器,每个基学习器都会根据前一个基学习器的表现进行调整。Boosting的核心思想是通过逐步提升模型的性能,将多个弱学习器组合成一个强学习器。
    在Boosting过程中,每个基学习器都会关注前一个基学习器预测错误的样本,尝试对其进行更加准确的预测。通过加权投票或加权平均,将多个基学习器的预测结果进行组合,得到最终的集成模型的预测结果。
    Boosting的主要思想是通过减少模型的偏差来提高整体模型的准确性和泛化能力。通过串行训练和逐步调整,Boosting能够逐渐减少模型在训练数据上的错误率,提高模型的预测能力。

常见的Boosting算法包括AdaBoost、Gradient Boosting和XGBoost等。

总结起来,Bagging和Boosting是两种常见的集成学习策略。Bagging通过并行训练多个基学习器,并对它们的预测结果进行投票或平均来得到最终预测结果;而Boosting通过串行训练多个基学习器,并根据前一个基学习器的表现进行调整,最终将它们的预测结果进行加权组合。这两种策略都能够提高模型的性能和泛化能力,但它们的实现方式和调整方式略有不同。

二、bagging algorithms are robust to variance error, while boosting algorithms are robust to bias error

Bagging算法对方差错误具有鲁棒性,而Boosting算法对偏差错误具有鲁棒性的原因如下:

  1. Bagging对方差错误具有鲁棒性:
    Bagging通过随机有放回地从原始训练集中抽取多个子样本集,并使用这些子样本集来训练多个基学习器。每个基学习器都是独立地训练,并且可以并行地进行。最后,通过对基学习器的预测结果进行投票或平均,来得到集成模型的最终预测结果。
    由于Bagging使用了随机抽样和并行训练的方式,它能够减少模型对训练数据的过拟合程度,从而降低方差错误。通过对多个基学习器的预测结果进行组合,Bagging能够减少个别基学习器的预测误差的影响,提高整体模型的稳定性和泛化能力。

  2. Boosting对偏差错误具有鲁棒性:
    Boosting是一种串行的集成学习策略,它通过顺序地训练多个基学习器,每个基学习器都会根据前一个基学习器的表现进行调整。Boosting的核心思想是通过逐步提升模型的性能,将多个弱学习器组合成一个强学习器。
    在Boosting过程中,每个基学习器都会关注前一个基学习器预测错误的样本,尝试对其进行更加准确的预测。通过加权投票或加权平均,将多个基学习器的预测结果进行组合,得到最终的集成模型的预测结果。
    Boosting能够对偏差错误具有鲁棒性的原因是,每个基学习器都会专注于改善前一个基学习器的错误,从而逐渐减少模型在训练数据上的偏差。通过串行训练和逐步调整,Boosting能够提高模型的准确性和泛化能力,从而降低偏差错误。

总结起来,Bagging算法通过随机抽样和并行训练来减少方差错误,Boosting算法通过串行训练和逐步调整来减少偏差错误。这两种策略都能够提高模型的性能和泛化能力,但它们对不同类型的错误具有不同的鲁棒性。

http://www.lryc.cn/news/247447.html

相关文章:

  • 居家适老化设计第三十四条---卫生间之照明
  • 如何使用Cloudreve将个人电脑打造为私有云盘并实现远程访问
  • [SaaS] 淘宝AI淘淘秀
  • 第二证券:机构密集调研消费电子、半导体产业链
  • app小程序定制的重点|软件定制开发|网站搭建
  • 11-28渗透
  • qt实现一个安卓测试小工具
  • 驾驭未来,智能化管理——汽车ERP系统
  • flutter开发实战-当前界面无操作60s返回主页实现
  • 绩效考核的基础及基本内容
  • 阿坤老师的彩带插花(蓝桥杯)
  • 系列二十四、Spring设计模式之策略模式
  • Linux常用命令——basename命令
  • LeetCode17.电话号码的字母组合
  • 为Oracle链接服务器使用分布式事务
  • 代洋集团,引领绿色能源新潮流
  • LuatOS-SOC接口文档(air780E)--rtos - RTOS底层操作库
  • 一名技术Leader应该是创作者
  • Java多线程总结
  • docker devicemapper: Error running DeleteDevice dm_task_run failed
  • 第二十章总结
  • Linux环境安装Java,Tomcat,Mysql,
  • 前后端分离开发出现的跨域问题
  • 水淼采集器-免费水淼采集器下载
  • [DASCTF 2023 0X401七月暑期挑战赛] web刷题记录
  • Python超级详细的变量命名规则
  • Zabbix 6 详细安装部署教程
  • 如何设置带有密码的excel只读模式?
  • 企业人力资源公司抖音直播招聘断播怎么处理?
  • 数据治理与数据入表、数据交易有什么关系?