当前位置: 首页 > news >正文

【深度学习笔记】04 概率论基础

04 概率论基础

    • 概率论公理
    • 联合概率
    • 条件概率
    • 贝叶斯定理
    • 边际化
    • 独立性
    • 期望和方差
    • 模拟投掷骰子的概率随投掷次数增加的变化

概率论公理

概率(probability)可以被认为是将集合映射到真实值的函数。
在给定的样本空间 S \mathcal{S} S中,事件 A \mathcal{A} A的概率,
表示为 P ( A ) P(\mathcal{A}) P(A),满足以下属性:

  • 对于任意事件 A \mathcal{A} A,其概率从不会是负数,即 P ( A ) ≥ 0 P(\mathcal{A}) \geq 0 P(A)0
  • 整个样本空间的概率为 1 1 1,即 P ( S ) = 1 P(\mathcal{S}) = 1 P(S)=1
  • 对于互斥(mutually exclusive)事件(对于所有 i ≠ j i \neq j i=j都有 A i ∩ A j = ∅ \mathcal{A}_i \cap \mathcal{A}_j = \emptyset AiAj=)的任意一个可数序列 A 1 , A 2 , … \mathcal{A}_1, \mathcal{A}_2, \ldots A1,A2,,序列中任意一个事件发生的概率等于它们各自发生的概率之和,即 P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) P(\bigcup_{i=1}^{\infty} \mathcal{A}_i) = \sum_{i=1}^{\infty} P(\mathcal{A}_i) P(i=1Ai)=i=1P(Ai)

联合概率

P ( A = a , B = b ) P(A=a,B=b) P(A=a,B=b)

给定任意值 a a a b b b,联合概率可以回答: A = a A=a A=a B = b B=b B=b同时满足的概率是多少?

对于任何 a a a b b b的取值, P ( A = a , B = b ) ≤ P ( A = a ) P(A = a, B=b) \leq P(A=a) P(A=a,B=b)P(A=a)

条件概率

0 ≤ P ( A = a , B = b ) P ( A = a ) ≤ 1 0 \leq \frac{P(A=a, B=b)}{P(A=a)} \leq 1 0P(A=a)P(A=a,B=b)1
我们称这个比率为条件概率(conditional probability),
并用 P ( B = b ∣ A = a ) P(B=b \mid A=a) P(B=bA=a)表示它:它是 B = b B=b B=b的概率,前提是 A = a A=a A=a已发生。

贝叶斯定理

根据乘法法则(multiplication rule )可得到 P ( A , B ) = P ( B ∣ A ) P ( A ) P(A, B) = P(B \mid A) P(A) P(A,B)=P(BA)P(A)
根据对称性,可得到 P ( A , B ) = P ( A ∣ B ) P ( B ) P(A, B) = P(A \mid B) P(B) P(A,B)=P(AB)P(B)
假设 P ( B ) > 0 P(B)>0 P(B)>0,求解其中一个条件变量,我们得到

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) . P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}. P(AB)=P(B)P(BA)P(A).

其中 P ( A , B ) P(A, B) P(A,B)是一个联合分布(joint distribution),
P ( A ∣ B ) P(A \mid B) P(AB)是一个条件分布(conditional distribution)。
这种分布可以在给定值 A = a , B = b A = a, B=b A=a,B=b上进行求值。

边际化

为了能进行事件概率求和,需要求和法则(sum rule),
B B B的概率相当于计算 A A A的所有可能选择,并将所有选择的联合概率聚合在一起:

P ( B ) = ∑ A P ( A , B ) , P(B) = \sum_{A} P(A, B), P(B)=AP(A,B),

这也称为边际化(marginalization)。
边际化结果的概率或分布称为边际概率(marginal probability)
边际分布(marginal distribution)。

独立性

如果两个随机变量 A A A B B B是独立的,意味着事件 A A A的发生跟 B B B事件的发生无关。
在这种情况下,通常将这一点表述为 A ⊥ B A \perp B AB
根据贝叶斯定理,马上就能同样得到 P ( A ∣ B ) = P ( A ) P(A \mid B) = P(A) P(AB)=P(A)
在所有其他情况下,我们称 A A A B B B依赖。

由于 P ( A ∣ B ) = P ( A , B ) P ( B ) = P ( A ) P(A \mid B) = \frac{P(A, B)}{P(B)} = P(A) P(AB)=P(B)P(A,B)=P(A)等价于 P ( A , B ) = P ( A ) P ( B ) P(A, B) = P(A)P(B) P(A,B)=P(A)P(B)
因此两个随机变量是独立的,当且仅当两个随机变量的联合分布是其各自分布的乘积。
同样地,给定另一个随机变量 C C C时,两个随机变量 A A A B B B条件独立的(conditionally independent),
当且仅当 P ( A , B ∣ C ) = P ( A ∣ C ) P ( B ∣ C ) P(A, B \mid C) = P(A \mid C)P(B \mid C) P(A,BC)=P(AC)P(BC)
这个情况表示为 A ⊥ B ∣ C A \perp B \mid C ABC

期望和方差

一个随机变量 X X X期望(expectation,或平均值(average))表示为

E [ X ] = ∑ x x P ( X = x ) . E[X] = \sum_{x} x P(X = x). E[X]=xxP(X=x).

当函数 f ( x ) f(x) f(x)的输入是从分布 P P P中抽取的随机变量时, f ( x ) f(x) f(x)的期望值为

E x ∼ P [ f ( x ) ] = ∑ x f ( x ) P ( x ) . E_{x \sim P}[f(x)] = \sum_x f(x) P(x). ExP[f(x)]=xf(x)P(x).

在许多情况下,我们希望衡量随机变量 X X X与其期望值的偏置。这可以通过方差来量化

V a r [ X ] = E [ ( X − E [ X ] ) 2 ] = E [ X 2 ] − E [ X ] 2 . \mathrm{Var}[X] = E\left[(X - E[X])^2\right] = E[X^2] - E[X]^2. Var[X]=E[(XE[X])2]=E[X2]E[X]2.

方差的平方根被称为标准差(standard deviation)。

随机变量函数的方差衡量的是:当从该随机变量分布中采样不同值 x x x时,
函数值偏离该函数的期望的程度:

V a r [ f ( x ) ] = E [ ( f ( x ) − E [ f ( x ) ] ) 2 ] . \mathrm{Var}[f(x)] = E\left[\left(f(x) - E[f(x)]\right)^2\right]. Var[f(x)]=E[(f(x)E[f(x)])2].

模拟投掷骰子的概率随投掷次数增加的变化

%matplotlib inline
import torch
from torch.distributions import multinomial
from d2l import torch as d2l

为了抽取像本,即掷骰子,我们只需为了抽取一个样本,
输出是另一个相同长度的向量:它在索引 i i i处的值是采样结果中 i i i出现的次数。

fair_probs = torch.ones([6]) / 6
multinomial.Multinomial(1, fair_probs).sample()
tensor([0., 1., 0., 0., 0., 0.])

使用PyTorch框架的函数同时抽取多个样本,得到我们想要的任意形状的独立样本数组

multinomial.Multinomial(10, fair_probs).sample()
tensor([3., 2., 0., 3., 1., 1.])

模拟1000次投掷,
然后统计1000次投掷后,每个数字被投中了多少次。

# 将结果存储为32位浮点数以进行除法
counts = multinomial.Multinomial(1000, fair_probs).sample()
counts / 1000  # 相对频率作为估计值
tensor([0.1650, 0.1650, 0.1720, 0.1750, 0.1610, 0.1620])

进行500组实验,每组抽取10个样本。

counts = multinomial.Multinomial(10, fair_probs).sample((500,))
cum_counts = counts.cumsum(dim=0)
estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)d2l.set_figsize((6, 4.5))
for i in range(6):d2l.plt.plot(estimates[:, i].numpy(),label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();

在这里插入图片描述

每条实线对应于骰子的6个值中的一个,并给出骰子在每组实验后出现值的估计概率。
当我们通过更多的实验获得更多的数据时,这 6 6 6条实体曲线向真实概率收敛。

http://www.lryc.cn/news/246262.html

相关文章:

  • 45.113.200.1搜索引擎蜘蛛抓取不到网站内容页面可能的原因
  • VMware 系列:vSphere Client安装配置常见问题及解决方案
  • FLASK博客系列5——模板之从天而降
  • 6.一维数组——用冒泡法将10个整数由大到小排序
  • Wireshark的捕获过滤器
  • 安陆FPGA调试中遇到的问题总结
  • Springboot2+WebSocket
  • 希尔伯特和包络变换
  • 国产Ai大模型和chtgpt3.5的比较
  • 机器学习ROC曲线中的阈值thresholds
  • MySOL常见四种连接查询
  • 数智融合 开启金融数据治理新时代
  • 数据结构——利用堆进行对数组的排序
  • Unity 场景切换
  • 【PTA题目】7-12 N个数求和 分数 20
  • 智能AIGC写作系统ChatGPT系统源码+Midjourney绘画+支持GPT-4-Turbo模型+支持GPT-4图片对话
  • List转string 逗号分隔
  • 手机文件怎么传到电脑?简单方法分享!
  • 计算机基础知识59
  • RK3568基于openharmony3.2版本之MIPI屏幕调试
  • pycharm安装PyQt5及其工具
  • 百度人工智能培训第一天笔记
  • 阿里云ACE认证之国际版与国内版对比!
  • Java 简易版王者荣耀
  • 【Linux】 file命令使用
  • MFC设置单选按钮点击自己可以可选和不可选
  • 【数据结构】二叉树之链式结构
  • 完美的输出打印 SQL 及执行时长[MyBatis-Plus系列]
  • 跨标签页通信的8种方式(下)
  • 笔记二十、使用路由Params进行传递参数