当前位置: 首页 > news >正文

LeetCode 1250. Check If It Is a Good Array【数论】

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

Given an array nums of positive integers. Your task is to select some subset of nums, multiply each element by an integer and add all these numbers. The array is said to be good if you can obtain a sum of 1 from the array by any possible subset and multiplicand.

Return True if the array is good otherwise return False.

Example 1:

Input: nums = [12,5,7,23]
Output: true
Explanation: Pick numbers 5 and 7.
5*3 + 7*(-2) = 1

Example 2:

Input: nums = [29,6,10]
Output: true
Explanation: Pick numbers 29, 6 and 10.
29*1 + 6*(-3) + 10*(-1) = 1

Example 3:

Input: nums = [3,6]
Output: false

Constraints:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^9

题意:给出一个正整数数组 nums ,任务是选出 nums 的任一可能子集,将子集中每个元素乘以一个整数并求和,如果和为1,则说明 nums 是个好数组。


视角1 裴蜀定理

本题涉及数论中的裴蜀定理(具体证明可参考「裴蜀定理」百度百科),其内容为:对于不全为零的任意整数 a,ba, ba,b ,记 g=gcd(a,b)g=gcd(a,b)g=gcd(a,b)a,ba,ba,b 的最大公约数,则对于任意整数 x,yx, yx,y 都满足 ax+byax + byax+byggg 的倍数,特别地存在整数 x,yx, yx,y 满足 ax+by=gax+by=gax+by=g 。这应该很好理解,ggga,ba,ba,b 最大公约数,则存在 m,nm,nm,n 满足 mg=a,ng=bmg =a,ng=bmg=a,ng=b ,所以对于任意整数 x,yx,yx,y 都有 ax+by=g(mx+ny)ax+by=g(mx+ny)ax+by=g(mx+ny)ggg 的倍数。

推广到多个整数的情况:对于不全为零的任意整数 a1,a2,…,ana_1,a_2,\dots,a_na1,a2,,an ,记 ggg 为这 nnn 个数的最大公约数,则对于任意 nnn 整数 x1,x2,…,xnx_1,x_2,\dots,x_nx1,x2,,xn 都满足 a1x1+⋯+anxna_1x_1+\dots + a_nx_na1x1++anxnggg 的倍数,特别地存在整数 x1,…,xnx_1,\dots, x_nx1,,xn 满足 a1x1+⋯+anxn=ga_1x_1+\dots +a_nx_n=ga1x1++anxn=g

一个重要推论是:正整数 a1,…,ana_1,\dots,a_na1,,an 的最大公约数是 111(充分必要条件)⇔\Leftrightarrow 存在 nnn 个整数 x1,…,xnx_1,\dots,x_nx1,,xn 满足 a1x1+⋯+anxn=1a_1x_1+\dots+a_nx_n =1a1x1++anxn=1

视角2 辗转相减法

求两个数的最大公因数,可以使用辗转相减法。回忆下述递归过程,不难发现:这一过程压缩后等价于,两个数 a,ba, ba,b 通过同时乘以两个特定整数,再求和可得它们的最大公因数。因此,如果它们的最大公因数为1,则说明存在两个特定整数 x,yx,yx,y 使得 ax+by=1ax+by=1ax+by=1 。反过来说,如果存在两个特定整数 x,yx,yx,y 使得 ax+by=1ax+by=1ax+by=1 ,则 gcd(a,b)=1gcd(a,b)=1gcd(a,b)=1(说明 a,ba,ba,b 通过辗转相减可得1,即 a,ba,ba,b 最大公因数为1)。

int gcd(a, b) {if (a > b) swap(a, b); // 使得a<=bif (a == 0) return b; // 如果a为0,则gcd(0,b)=breturn gcd(a, b - xa); // x是使得xa最大、但xa<=b的某一正整数// b-xa其实就是b%a
}

从而,如果一个互质数组的最大公因数是1,那就一定存在一组整数可以让它们相乘求和得到1。反过来说也可行。

对于 nums 来说,如果存在一个数组子集满足题意(即存在一组整数使它们互乘再求和为1),则说明该数组子集是互质的,从而 nums 一定是互质的。如果 nums 不是互质的,则 nums 就不是好数组。

其他视角

从一些简单的例子入手来思考本题。示例三给的 nums = [3, 6] ,可以先朴素地列出所有的可能性,其子集为 {}, {3}, {6}, {3, 6}

  • 空集显然不符合要求。
  • {3}, {6} 显然也不符合要求。因为对于任意不为1的正整数 xxx ,乘以任意整数 aaa 的结果 axaxax 都不可能为1。当且仅当 x=1x=1x=1 时,才存在唯一的整数 a=1a=1a=1 能使 axaxax 满足 ax=1ax = 1ax=1
  • {3, 6} 也不符合要求。假设 yyyzzz 是任意整数,我们需要找到使得 3y+6z=13y+6z=13y+6z=1 的那对 (y,z)(y, z)(y,z) 。由于 3y+6z=3(y+2z)3y+6z=3(y+2z)3y+6z=3(y+2z) ,而 (y+2z)(y + 2z)(y+2z) 可看作是一个整体的整数,由上一点的分析可知,不存在这样的整数 a=(y+2z)a = (y + 2z)a=(y+2z) 使得 3a=13a = 13a=1 。3是3和6的最大公约数,因此可以大胆猜测最大公约数应在本题中占很重要的位置

因此对两个正整数 a,ba, ba,b ,假设其最大公约数为 ggg 使得 a=mg,b=nga=mg, b=nga=mg,b=ng ,考虑任意整数 x,yx,yx,y ,则 ax+by=g(mx+ny)ax + by=g(mx + ny)ax+by=g(mx+ny) ,可知 mx+nymx+nymx+ny 必定是整数,如要找到某一对 x,yx,yx,y 使得 g(mx+ny)=1g(mx+ny)=1g(mx+ny)=1 成立,则唯一的可能性是 g=1g=1g=1(mx+ny)=1(mx+ny)=1(mx+ny)=1 。也就是 a,ba,ba,b 的最大公因数必须是1。

解法 数论

由裴蜀定理可得,题意等价于:如果 nums 中全部整数的最大公约数为1(即为互质数组),则 nums 为好数组。否则不是。

class Solution:def isGoodArray(self, nums: List[int]) -> bool:return reduce(gcd, nums) == 1
http://www.lryc.cn/news/24522.html

相关文章:

  • ETHDenver 2023
  • React架构演变
  • 安全认证--JWT介绍及使用
  • 【计算机组成原理】计算机硬件的基础组成、认识各个硬件部件
  • 使用ChIPSeeker进行ChIP-seq, ATAC-seq,cuttag等富集峰的基因组注释
  • 第九届蓝桥杯省赛——7缩位求和
  • 【c++】STL常用容器5—list容器
  • 【牛客刷题专栏】0x0D:JZ5 替换空格(C语言编程题)
  • 聚观早报 | 苹果2024年放弃高通;腾讯回应进军类 ChatGPT
  • Elasticsearch:如何正确处理 Elasticsearch 摄取管道故障
  • 指标体系—北极星指标体系
  • 【操作系统】内存管理
  • 家庭消耗品跟踪管理软件HomeLists
  • django模型简要(1)
  • 【shell 编程大全】sed详解
  • 关于sudo配置
  • EEGLAB处理运动想象脑电数据
  • span标签的使用场景
  • Kafka面试问题总结
  • FPGA案例开发手册——基于全志T3+Logos FPGA核心板
  • 或许你想要的画图工具在这里
  • 2023年功能测试还值得入行吗?
  • 2022-2023山东大学机器学习期末回忆及复习建议
  • 基于ssm框架实现家庭理财收支系统(源码+数据库+文档)
  • MyBatis - 09 - 自定义映射resultMap
  • springBoot常见面试题(2023最新)
  • YOLOv5全面解析教程⑤:计算mAP用到的Numpy函数详解
  • Linux入门---基本指令(下)
  • mysql基础操作1
  • nginx-ingress部署+跨命名空间转发