当前位置: 首页 > news >正文

torch 的数据加载 Datasets DataLoaders

点赞收藏关注!
如需要转载,请注明出处!

torch的模型加载有两种方式:
Datasets & DataLoaders

torch本身可以提供两数据加载函数:
torch.utils.data.DataLoader()和torch.utils.data.Dataset()

其中torch.utils.data 是PyTorch提供的一个模块,用于处理和加载数据。该模块提供了一系列工具类和函数,用于创建、操作和批量加载数据集。

加载函数后可以实现数据集代码与模型训练代码分离,以获得更好的可读性和模块化
Dataset定义了抽象的数据集类,用户可以通过继承该类来构建自己的数据集。制作自己的数据集必须要实现三个函数:

  • init()函数在实例化Dataset对象时运行一次
  • len()函数返回数据集中样本的数量
  • getitem()函数的作用是:从给定索引 index,从数据集中加载并返回一个样本并将其转换为张量。
import torch
from torch.utils.data import Datasetclass CreateDataset(Dataset):def __init__(self, data):self.data = datadef __getitem__(self, index):# 根据索引获取样本return self.data[index]def __len__(self):# 返回数据集大小return len(self.data)# 创建数据集对象
data = [[255,255,255],[255,245,235],[225,226,227]]
dataset = CreateDataset(data)# 根据索引获取样本
sample = dataset[1]
print(sample)
# [255,245,235]

数据处理模块其他的功能:

  • TensorDataset: 继承自 Dataset 类,用于将张量数据打包成数据集。它接受多个张量作为输入,并按照第一个输入张量的大小来确定数据集的大小。对 tensor 进行打包,就好像 python 中的 zip 功能。该类通过每一个 tensor 的第一个维度进行索引。因此,该类中的 tensor 第一维度必须相等。
from torch.utils.data import TensorDataset
import torch
from torch.utils.data import DataLoadera = torch.tensor([[11, 22, 33], [44, 55, 66], [77, 88, 99], [11, 22, 33], [44, 55, 66], [77, 88, 99], [11, 22, 33], [44, 55, 66], [77, 88, 99], [11, 22, 33], [44, 55, 66], [77, 88, 99]])
b = torch.tensor([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2])
train_ids = TensorDataset(a, b)for x_train, y_label in train_ids:print(x_train, y_label)##############################################################################################
#tensor([11, 22, 33]) tensor(0)
#tensor([44, 55, 66]) tensor(1)
#tensor([77, 88, 99]) tensor(2)
#tensor([11, 22, 33]) tensor(0)
#tensor([44, 55, 66]) tensor(1)
#tensor([77, 88, 99]) tensor(2)
#tensor([11, 22, 33]) tensor(0)
#tensor([44, 55, 66]) tensor(1)
#tensor([77, 88, 99]) tensor(2)
#tensor([11, 22, 33]) tensor(0)
#tensor([44, 55, 66]) tensor(1)
#tensor([77, 88, 99]) tensor(2)
  • DataLoader: 数据加载器类,用于批量加载数据集。它接受一个数据集对象作为输入,并提供多种数据加载和预处理的功能,如设置批量大小、多线程数据加载和数据打乱等。DataLoader中最重要的参数就是dataset,它决定了要装载的数据集。

  • Subset: 数据集的子集类,用于从数据集中选择指定的样本。定义了一个子集的索引列表indices,它可以根据需要进行调整。然后,我们使用Subset类创建了一个名为subset的子集对象,它接受两个参数:原始数据集dataset和子集的索引列表indices。

indices = [0, 2, 4]  # 子集的索引列表
subset = Subset(dataset, indices)
  • random_split: 将一个数据集随机划分为多个子集,可以指定划分的比例或指定每个子集的大小。
import torch
import torchvision
# from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torchvision.datasets import ImageFolder
# 准备数据集
from torch import nn
from torch.utils.data import DataLoader# 定义训练的设备
device = torch.device("cuda")
#读取数据
data_transform = transforms.Compose([transforms.Resize(size=(224,224)),transforms.ToTensor(),transforms.Normalize(mean=[0.5,0.5,0.5], std=[0.5, 0.5, 0.5])
])
full_dataset = ImageFolder(r'D:\PythonSpace\data\trainTest',transform = data_transform)
# length 数据集总长度
full_data_size = len(full_dataset)
print("总数据集的长度为:{}".format(full_data_size))
train_size = int(0.8 * len(full_dataset))
test_size = len(full_dataset) - train_size#在这里
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size])
#在这里train_data_size = len(train_dataset)
test_data_size = len(test_dataset)
# 如果train_data_size=10, 训练数据集的长度为:10
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
>>>
总数据集的长度为:100
训练数据集的长度为:80
测试数据集的长度为:20
  • ConcatDataset: 将多个数据集连接在一起形成一个更大的数据集。
#链接两个数据集
dataset = torch.utils.data.ConcatDataset([celeba_dataset, digiface_dataset]) 
#导入数据集
loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=True, drop_last=True, num_workers=cfg.n_workers)
  • get_worker_info: 获取当前数据加载器所在的进程信息。torch.utils.data.get_worker_info() 在worker进程中返回各种有用的信息(包括worker id、dataset replica、initial seed等),在main进程中返回None。用户可以在数据集代码和/或 worker_init_fn 中使用此函数来单独配置每个数据集副本,并确定代码是否在工作进程中运行。分片数据集特别有用。

如有帮助,点赞收藏关注!

http://www.lryc.cn/news/241925.html

相关文章:

  • 【Promise】某个异步方法执行结束后 在执行下面方法
  • 任意文件下载漏洞(CVE-2021-44983)
  • C++(20):通过source_location实现日志函数
  • 【数据结构】树与二叉树(廿二):树和森林的遍历——后根遍历(递归算法PostOrder、非递归算法NPO)
  • 精通Nginx(17)-安全管控之防暴露、限制访问、防DDos攻击、防爬虫、防非法引用
  • STM32 Flash
  • 文件批量重命名技巧:图片文件名太长怎么办?告别手动改名方法
  • 微信小程序手写滑动tab
  • 一文读懂如何安全地存储密码
  • 【运维面试100问】(六)buffer和cache的区别
  • 创建域名邮箱邮件地址的方法与步骤
  • Qt框架学习(1)
  • 3D电路板在线渲染案例
  • ResizeObserver loop limit exceeded报错解决方案
  • 【OpenCV实现图像:使用OpenCV进行图像处理之透视变换】
  • Vue中学习笔记-数据代理
  • IDEA 配置maven结合案例使用篇
  • 基于白鲸算法优化概率神经网络PNN的分类预测 - 附代码
  • Android使用Kotlin利用Gson解析多层嵌套Json数据
  • DOM事件的传播机制
  • gitlab利用CI多工程持续构建
  • 【C++初阶】四、类和对象(构造函数、析构函数、拷贝构造函数、赋值运算符重载函数)
  • js粒子效果(二)
  • 01.让自己习惯C++
  • ElementUI table+dialog实现一个简单的可编辑的表格
  • Rust语言精讲:数据类型全解析
  • 《数据结构、算法与应用C++语言描述》-代码实现散列表(线性探查与链式散列)
  • Hadoop学习笔记:运行wordcount对文件字符串进行统计案例
  • python编写简单登录系统(密码混淆加密)
  • UVA1025 城市里的间谍 A Spy in the Metro