当前位置: 首页 > news >正文

hiveSQL开窗函数详解

hive开窗函数

文章目录

  • hive开窗函数
    • 1. 开窗函数概述
      • 1.1 窗口函数分类
      • 1.2 窗口函数和普通聚合函数的区别
    • 2. 窗口函数的基本用法
      • 2.1 基本用法
      • 2.2 设置窗口的方法
        • 2.2.1 window_name
        • 2.2.2 partition by
        • 2.2.3 order by 子句
        • 2.2.4 rows指定窗口大小
          • 窗口框架
      • 2.3 开窗函数中加 order by 和不加 order by 的区别
    • 3. 窗口函数用法举例
      • 3.1 序号函数: row_number() / rank() / dese_rank()
      • 3.2 分布函数: percent_rank() / cume_dist()
        • 3.2.1 percent_rank()
        • 3.2.2 cume_dist()
        • 3.2.3 前后函数lag(expr, n, defval) 、 lead(expr, n, defval)
        • 3.2.4 头尾函数:first_value(expr) 、 last_value(expr)
    • 4 聚合函数+窗口函数

1. 开窗函数概述

窗口函数也称OLAP函数,对数据库进行实时分析处理

1.1 窗口函数分类

  • 序号函数:row_number() / rank() / dense_rank()
  • 分布函数:percent_rank() / cume_dist()
  • 前后函数:lag() / lead()
  • 头尾函数:first_val() / last_val()
  • 聚合函数+窗口函数:sum() over()、 max()/min() over() 、avg() over()
  • 其他函数:nth_value() / nfile()

1.2 窗口函数和普通聚合函数的区别

聚合函数是将多条记录聚合成一条,窗口函数是每条记录都会执行,有几条记录执行完还是几条

窗口函数兼具group by子句的分组功能和order by子句的排序功能,但是partition by 子句不具备group by的汇总功能

2. 窗口函数的基本用法

准备基础数据

CREATE TABLE exam_record (uid int COMMENT '用户ID',exam_id int COMMENT '试卷ID',start_time timestamp COMMENT '开始时间',submit_time timestamp COMMENT '提交时间',score tinyint COMMENT '得分'
) 
COMMENT '考试记录表'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE
TBLPROPERTIES ("skip.header.line.count"="1");INSERT INTO exam_record(uid,exam_id,start_time,submit_time,score) VALUES
(1006, 9003, '2021-09-07 10:01:01', '2021-09-07 10:21:02', 84),
(1006, 9001, '2021-09-01 12:11:01', '2021-09-01 12:31:01', 89),
(1006, 9002, '2021-09-06 10:01:01', '2021-09-06 10:21:01', 81),
(1005, 9002, '2021-09-05 10:01:01', '2021-09-05 10:21:01', 81),
(1005, 9001, '2021-09-05 10:31:01', '2021-09-05 10:51:01', 81),
(1004, 9002, '2021-09-05 10:01:01', '2021-09-05 10:21:01', 71),
(1004, 9001, '2021-09-05 10:31:01', '2021-09-05 10:51:01', 91),
(1004, 9002, '2021-09-05 10:01:01', '2021-09-05 10:21:01', 80),
(1004, 9001, '2021-09-05 10:31:01', '2021-09-05 10:51:01', 80);select * from exam_record;
exam_record.uid	exam_record.exam_id	exam_record.start_time	exam_record.submit_time	exam_record.score
1006	9001	2021-09-01 12:11:01	2021-09-01 12:31:01	89
1006	9002	2021-09-06 10:01:01	2021-09-06 10:21:01	81
1005	9002	2021-09-05 10:01:01	2021-09-05 10:21:01	81
1005	9001	2021-09-05 10:31:01	2021-09-05 10:51:01	81
1004	9002	2021-09-05 10:01:01	2021-09-05 10:21:01	71
1004	9001	2021-09-05 10:31:01	2021-09-05 10:51:01	91
1004	9002	2021-09-05 10:01:01	2021-09-05 10:21:01	80
1004	9001	2021-09-05 10:31:01	2021-09-05 10:51:01	80

2.1 基本用法

窗口函数语法

<窗口函数> over[(partition by <列表清单>)] order by <排序列表清单> [rows between 开始位置 and 结束位置]

窗口函数:指要使用的分析函数,

over(): 用来指定窗口函数的范围,如果括号中什么都不写,则窗口包含where的所有行

select uidscore,sum(score) over() as sum_score
from exam_record;

运行结果

uid	score	sum_score
1006	89	654
1006	81	654
1005	81	654
1005	81	654
1004	71	654
1004	91	654
1004	80	654
1004	80	654

2.2 设置窗口的方法

2.2.1 window_name

给窗口指定一个别名

select uid,score,rank() over my_window_name as rk_num,row_number() over my_window_name as row_num
from exam_record
window my_window_name as (partition by uid order by score);

请添加图片描述

2.2.2 partition by

select uid,score,sum(score) over(partition by uid) as sum_score
from exam_record;

请添加图片描述

按照uid进行分组,分别求和

使用row_number()序号函数,表明序号

selectuid,score,row_number() over(partition by uid) as row_num
from exam_record;

请添加图片描述

2.2.3 order by 子句

按照哪些字段进行排序,窗口函数将按照排序后的记录进行编号

selectuid,score,row_number() over (partition by uid order by score desc) as row_num
from exam_record

请添加图片描述

单独使用order by uid

selectuid,score,sum(score) over (order by uid desc) as row_num
from exam_record;

请添加图片描述

单独使用partition by uid

selectuid,score,sum(score) over (partition by uid) as row_num
from exam_record;

请添加图片描述

partition by进行分组内的求和,分区间独立

order by 对序号相同的进行求和,对序号不同的进行累加求和

单独使用order by score

selectuid,score,sum(score) over (order by score desc) as row_num
from exam_record;

请添加图片描述

2.2.4 rows指定窗口大小

查看score的平均值

selectuid,score,avg(score) over(order by score desc) as avg_num
from exam_record

请添加图片描述

按照score降序排列,每一行计算前一行到当前行的score的平均值

selectuid,score,avg(score) over(order by row_score) as avg_num
from(selectuid,score,row_number() over(order by score desc) as row_scorefrom exam_record)res

请添加图片描述

窗口框架

指定窗口大小,框架是对窗口的进一步分区,框架有两种限定方式:

使用rows语句,通过指定当前行之前或之后的固定数目的行来限制分区中的行数

使用range语句,按照排列序列的当前值,根据相同值来确定分区中的行数

order by 字段名 range|rows 边界规则0 | [between 边界规则1] and 边界规则2 

range和rows的区别

range按照值的范围进行范围的定义,rows按照行的范围进行范围的定义

请添加图片描述

  • 使用框架时,必须要有order by子句,如果仅指定了order by子句未指定框架,则默认框架会使用range unbounded preceding and current row (从第一行到当前行的数据)
  • 如果窗口函数没有指定order by子句,就不存在 rows|range 窗口的计算
  • range 只支持使用unbounded 和 current row

查询我与前两名的平均值

selectuid,score,avg(score) over(order by score desc rows 2 preceding) as avg_score
from exam_record;

请添加图片描述

查询当前行及前后一行的平均值

selectuid,score,avg(score) over(order by score desc rows between 1 preceding and 1 following) as avg_score
from exam_record;

请添加图片描述

2.3 开窗函数中加 order by 和不加 order by 的区别

当开窗函数为排序函数时,如row_number()、rank()等,over中的order by 只起到窗口内排序的作用

当开窗函数为聚合函数时,如max、min、count等,over中的order by不仅对窗口内排序,还起到窗口内从当前行到之前所有行的聚合

selectuid,exam_id,start_time,sum(score) over(partition by uid) as one,sum(score) over(partition by uid order by start_time) as two
from exam_record

请添加图片描述

3. 窗口函数用法举例

3.1 序号函数: row_number() / rank() / dese_rank()

区别:rank() : 并列排序,跳过重复序号------1、1、3

​ row_number() : 顺序排序——1、2、3

​ dese_rank() : 并列排序,不跳过重复序号——1、1、2

selectuid,score,rank() over my_window as rk_num,row_number() over my_window as row_num
from exam_record
window my_window as (partition by uid order by score);

请添加图片描述

不使用窗口函数实现分数排序

SELECTP1.uid,P1.score,(SELECTCOUNT(P2.score)FROM exam_record P2WHERE P2.score > P1.score) + 1 AS rank_1
FROM exam_record P1
ORDER BY rank_1;

请添加图片描述

3.2 分布函数: percent_rank() / cume_dist()

3.2.1 percent_rank()

percent_rank() 函数将某个数据在数据集的排位作为数据集的百分比值返回,范围0到1,

按照(rank - 1) / (rows - 1)进行计算,rank为rank()函数产生的序号,rows为当前窗口的记录总行数

selectuid,score,rank() over my_window as rank_num,percent_rank() over my_window as prk
from exam_record
window my_window as (order by score desc)

请添加图片描述

3.2.2 cume_dist()

如果升序排列,则统计:小于等于当前值的行数 / 总行数

如果降序排列,则统计:大于等于当前值的行数 / 总行数

查询小于等于当前score的比例

selectuid,score,rank() over my_window as rank_num,cume_dist() over my_window as cume
from exam_record
window my_window as (order by score asc);

请添加图片描述

3.2.3 前后函数lag(expr, n, defval) 、 lead(expr, n, defval)

lag()和lead()函数可以在同一次查询中取出同一字段前 n 行的数据和后 n 行的数据作为独立列

lag( exp_str,offset,defval) over(partition by .. order by …)lead(exp_str,offset,defval) over(partition by .. order by …)
  • exp_str 是字段名
  • offset是偏移量,即 n 的值
  • defval默认值,如何当前行向前或向后 n 的位置超出表的范围,则会将defval的值作为返回值,默认为NULL

查询前1名同学和后一名同学的成绩和当前同学成绩的差值

  • 先将前一名、后一名以及当前行的分数放在一起
selectuid,score,lag(score, 1, 0) over my_window as `before`,lead(score, 1, 0) over my_window as `next`
from exam_record
window my_window as (order by score desc);

请添加图片描述

  • 然后做差值
selectuid,score,score - before as before,score - next as next
from (selectuid,score,lag(score, 1, 0) over my_window as before,lead(score, 1, 0) over my_window as next
from exam_record
window my_window as (order by score desc))res

请添加图片描述

3.2.4 头尾函数:first_value(expr) 、 last_value(expr)

  • 返回第一个expr:first_value(expr)
  • 返回第二个expr:last_value(expr)

查询第一个和最后一个分数

selectuid,score,first_value(score) over my_window as first,last_value(score) over my_window as last
from exam_record
window my_window as (order by score desc);

请添加图片描述

4 聚合函数+窗口函数

窗口函数在where之后执行,所以where需要用窗口函数作为条件

 SELECTuid,score,sum(score) OVER my_window_name AS sum_score,max(score) OVER my_window_name AS max_score,min(score) OVER my_window_name AS min_score,avg(score) OVER my_window_name AS avg_scoreFROM exam_recordWINDOW my_window_name AS (ORDER BY score desc)

请添加图片描述

http://www.lryc.cn/news/24157.html

相关文章:

  • 深度学习基础实例与总结
  • 在 WIndows 下安装 Apache Tinkerpop (Gremlin)
  • 从软件的角度看待PCI和PCIE(一)
  • DSP_TMS320F28377D_ADC学习笔记
  • springcloud3 Nacos中namespace和group,dataId的联系
  • [YOLO] yolo理解博客笔记
  • 清华源pip安装Python第三方包
  • python线程池【ThreadPoolExecutor()】批量获取博客园标题数据
  • LearnOpenGL-入门-8.坐标系统
  • windows10使用wsl2安装docker
  • Javascript的API基本内容(六)
  • 电压放大器和电流放大器的区别是什么意思
  • cast提前!最简单有效的神经网络优化方法,没有之一!
  • LeetCode刷题——动态规划(C/C++)
  • 车载智能终端TBOX
  • 技术分担产品之忧(上):挑选有业务专家潜力的人
  • UVa 12569 Planning mobile robot on Tree (EASY Version) 树上机器人规划(简单版) BFS 二进制
  • intel的集成显卡(intel(r) uhd graphics) 配置stable diffusion
  • 【数据库的基础知识(2)】
  • Docker部署实战
  • RestTemplate 相关使用
  • 新手小白亚马逊注册最全教程在此
  • 二分查找重复情况 找最左边或最右边的位置下标
  • 智慧扫码点餐系统源码
  • 分布式环境并发场景下,如何操作抢红包(或者减少库存)
  • 明星的孩子也在做的感统训练,真的有用吗?
  • 守护进程与TCP通讯
  • 在线文本翻译能力新增14个直译模型,打造以中文为轴心语言的翻译系统
  • CVE-2022-42889 Apache Commons Text 漏洞
  • 20- widedeep及函数式构建模型 (TensorFlow系列) (深度学习)