当前位置: 首页 > news >正文

动态神经网络时间序列预测

      大家好,我是带我去滑雪!

     神经网络投照是否存在反锁与记忆可以分为静态神经网络与动态神经网络。动态神经网络是指神经网络带有反做与记忆功能,无论是局部反馈还是全局反锁。通过反馈与记忆,神经网络能将前一时刻的数据保留,使其加人到下一时刻数据的计算,使网络不仅具有动态性而且保留的系统信息也更加完整。动态神经网络有许多应用,例如,金融分析师用于分析某只股票、基金或者其他金融工具未来某时点的价格,工程师用于预测最近一次可能的飞机引擎故障时间等,可见动态神经网络在分析、仿真、系统监测与控制等领域有重要应用。根据动态神经网络实现系统动态的方法不同,将之分为两类:一类是回归神经网络,它是由静态神经元和网络输出反馈构成的动态网络,典型的有 NARX 回归神经网络;另一类是通过神经元反馈形成,的神经网络,如全回归神经网络、Elman 神经网络、PID神经网络等等。本期将动态网络应用于时间序列的预测中,实现通过 NARX 动态神经网络对时问序列数据的建模仿真及效果评价。

目录

一、问题描述与模型建立

(1)问题描述

(2)模型建立

二、代码实现与结果分析

(1)建立非线性自回归模型

(2)数据准备工作

(3)训练函数、误差函数、绘图函数确定

(3)NARX神经网络模型

(5)结果分析


一、问题描述与模型建立

(1)问题描述

      中和反应是化学反应中复分解反应的一种,是指酸和破互相交换组分、生成盐和水的反应,在中和的过程中,酸里的氢离子和碱中的氢氧根离子会结合成水。中和反应发生后最终产物的PH 值不一定是7。如果一强酸与强破参与中和反应,其产物的PH则会是7。如强酸盐酸和强碱氢氧化钠发生中和反应,产生氣化钠和水。本案例使用 MATLAB 自带案例数据,即给定两个酸碱溶液的流速来预测和反应过程后溶液的PH值。

(2)模型建立

       数据使用两个含有2001 个监测点的时间序列数据。其中 PhInputs 为一个1×2001维的cell,代表了2001 个监测时间点酸碱溶液的流速。PhTargets 为 1×2001 维的cell,代表中和反应后溶液的pH 值。本研究的目的就是通过当前的酸碱溶液流速预测中和反应后溶液的pH 值大小。

二、代码实现与结果分析

(1)建立非线性自回归模型

load phdata
inputSeries = phInputs;
targetSeries = phTargets;%% 建立非线性自回归模型
inputDelays = 1:2;
feedbackDelays = 1:2;
hiddenLayerSize = 10;
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize);

(2)数据准备工作

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
net.inputs{2}.processFcns = {'removeconstantrows','mapminmax'};%% 时间序列数据准备工作
[inputs,inputStates,layerStates,targets] = preparets(net,inputSeries,{},targetSeries);%% 训练数据、验证数据、测试数据划分
net.divideFcn = 'dividerand';  
net.divideMode = 'value';  
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

(3)训练函数、误差函数、绘图函数确定

net.trainFcn = 'trainlm';  % Levenberg-Marquardtnet.performFcn = 'mse';  % Mean squared errornet.plotFcns = {'plotperform','plottrainstate','plotresponse', ...'ploterrcorr', 'plotinerrcorr'};[net,tr] = train(net,inputs,targets,inputStates,layerStates);outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)trainTargets = gmultiply(targets,tr.trainMask);
valTargets = gmultiply(targets,tr.valMask);
testTargets = gmultiply(targets,tr.testMask);
trainPerformance = perform(net,trainTargets,outputs)
valPerformance = perform(net,valTargets,outputs)
testPerformance = perform(net,testTargets,outputs)figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotregression(targets,outputs)
figure, plotresponse(targets,outputs)
figure, ploterrcorr(errors)
figure, plotinerrcorr(inputs,errors)

(3)NARX神经网络模型

narx_net_closed = closeloop(net);
view(net)
view(narx_net_closed)
phInputs_c=phInputs(1500:2000);
PhTargets_c=phTargets(1500:2000);[p1,Pi1,Ai1,t1] = preparets(narx_net_closed,phInputs_c,{},PhTargets_c);
yp1 = narx_net_closed(p1,Pi1,Ai1);
plot([cell2mat(yp1)' cell2mat(t1)'])

(5)结果分析


更多优质内容持续发布中,请移步主页查看。

若有问题可邮箱联系:1736732074@qq.com 

博主的WeChat:TCB1736732074

   点赞+关注,下次不迷路!

http://www.lryc.cn/news/239275.html

相关文章:

  • Unity 三维场景的搭建 软件构造实验报告
  • 2024贵州大学计算机考研分析
  • Spring高级bean的实例化方法
  • Vue2系列 — 渲染函数 (render + createElement)
  • 加载SSL证书
  • redis 非关系型数据库
  • Python配置与测试利器:Hydra + pytest的完美结合
  • 5.基于飞蛾扑火算法(MFO)优化的VMD参数(MFO-VMD)
  • 爱创科技总裁谢朝晖荣获“推动医药健康产业高质量发展人物”
  • 055-第三代软件开发-控制台输出彩虹日志
  • Os-hackNos-3
  • 时序预测 | Matlab实现HPO-ELM猎食者算法优化极限学习机的时间序列预测
  • LeetCode:307. 区域和检索 - 数组可修改(树状数组 C++)
  • 909-2015-T3
  • 【云原生】初识 Service Mesh
  • 常见的8个JMeter压测问题
  • 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序 计算机竞赛
  • 羊大师教你如何有效解决工作中的挑战与压力?
  • 【性能测试】稳定性/并发压力测试的TPS计算+5W并发场景设计...
  • 人工智能的时代---AI的影响
  • LeetCode 每日一题 2023/11/13-2023/11/19
  • Leetcode——169 多数元素
  • vue中原生H5拖拽排序_拖拽图片也是同样的道理
  • 【C语言】计算实时太阳角度(高度角、方位角),以及使用stm32单片机实时获取时间戳
  • 创建git仓库
  • 19.悲观锁与乐观锁解析
  • C语言--给出一个点的坐标判断它在单位圆的内部外部还是上面
  • 变频器基础问答集21-50
  • OpenCvSharp从入门到实践-(01)认识OpenCvSharp开发环境搭建
  • OSG文字-渐变文字(4)