当前位置: 首页 > news >正文

2021秋招-总目录

2021秋招-目录

知识点总结

  1. 预训练语言模型: Bert家族
    1.1 BERT、attention、transformer理解部分
  1. B站讲解–强烈推荐
  2. 可视化
  3. 推倒
  4. 结合代码理解
  5. 代码部分
  6. 常见面试考点以及问题:
  1. word2vec 、 fasttext 、elmo;
  2. BN 、LN、CN、WN
  3. NLP中的loss与评价总结
    4.1 loss_function:
  1. 深度学习-Loss函数
  1. L1、L2正则化总结: L1,L2正则所有问题-视频-PPT截图⭐⭐⭐⭐
    5.1 知乎-L1正则化与L2正则化⭐⭐⭐
    5.2 贝叶斯眼里的正则化⭐⭐
    5.1 L1正则化与L2正则化
    5.2 深入理解L1、L2正则化
    5.3 L1和L2正则化的概率解释🎃
    5.4 机器学习中的范数规则化之(一)L0、L1与L2范数
    5.5 L1正则化和L2正则化的详细直观解释
    5.6 机器学习——正则化不理解的地方
  2. 过拟合、欠拟合 原因、现象、解决办法。
    6.1 深度学习中的过拟合问题和解决办法(转载)
    6.2

面经

刷题

深度学习汇总

0. 数学公式整理

机器学习之常用矩阵/向量运算-待整理

  1. 矩阵乘法
  2. Hadamard product
  3. 向量点积
  4. 向量叉积
  5. CNN中点积求和
  6. 矩阵乘法中: 可以看作 向量点积;

(转载)数学-矩阵计算 矩阵和向量的求导法则-待整理

1. 前馈网络、反向传播公式推导

反向传播算法(过程及公式推导)⭐⭐⭐
反向传播算法—从四个基本公式说起

  • 神经元结构神经网络入门——神经元算法
    在这里插入图片描述
  • 神经元/数据/参数 计算; 神经元指的一个结构。
    在这里插入图片描述
    在这里插入图片描述

2. SGD推倒

3. 优化器总结

4. 激活函数总结

5. pooling、dropout、

6. 参数 &超参数、batch_size、学习率

6.损失函数专题

7.过拟合、欠拟合

8.BN、LN

8.1 Internal Covariate Shift

  • 如何理解 Internal Covariate Shift?

​ 深度神经网络模型的训练为什么会很困难?其中一个重要的原因是,深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈,这就使得高层需要不断去重新适应底层的参数更新。为了训好模型,我们需要非常谨慎地去设定学习率、初始化权重、以及尽可能细致的参数更新策略。

​ Google 将这一现象总结为 Internal Covariate Shift,简称 ICS。 什么是 ICS 呢?

​ 大家都知道在统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的”。如果不一致,那么就出现了新的机器学习问题,如 transfer learning / domain adaptation 等。而 covariate shift 就是分布不一致假设之下的一个分支问题,它是指源空间和目标空间的条件概率是一致的,但是其边缘概率不同

​ 大家细想便会发现,的确,对于神经网络的各层输出,由于它们经过了层内操作作用,其分布显然与各层对应的输入信号分布不同,而且差异会随着网络深度增大而增大,可是它们所能“指示”的样本标记(label)仍然是不变的,这便符合了covariate shift的定义。由于是对层间信号的分析,也即是“internal”的来由。

那么ICS会导致什么问题?

简而言之,每个神经元的输入数据不再是“独立同分布”。

其一,上层参数需要不断适应新的输入数据分布,降低学习速度。

其二,下层输入的变化可能趋向于变大或者变小,导致上层落入饱和区,使得学习过早停止。

其三,每层的更新都会影响到其它层,因此每层的参数更新策略需要尽可能的谨慎。

参考文献

9.CNN

10.RNN

11.Attention-Transformer

12.BERT

13.BERT~ALBert ~ 。。。

http://www.lryc.cn/news/238684.html

相关文章:

  • HTML5生成二维码
  • 大数据-之LibrA数据库系统告警处理(ALM-25005 Nscd服务异常)
  • NLP:使用 SciKit Learn 的文本矢量化方法
  • 这些仪表板常用的数据分析模型,你都见过吗?
  • 【Proteus仿真】【Arduino单片机】多功能数字时钟设计
  • c语言回文数
  • 【学习记录】从0开始的Linux学习之旅——编译linux内核
  • uni-app - 日期 · 时间选择器
  • 使用USB转JTAG芯片CH347在Vivado下调试
  • 硬技能之上的软技巧(三)
  • mysql 查询
  • 2311rust过程宏的示例
  • 数据分析:数据预处理流程及方法
  • uniapp 防抖节流封装和使用
  • springcloud alibaba学习视频
  • 【MySQL】一些内置函数(时间函数、字符串函数、数学函数等,学会了有妙用)
  • QtC++与QColumnView详解
  • 微信小程序配置企业微信的在线客服
  • 深入理解Java AQS:从原理到源码分析
  • 【数据结构(四)】栈(1)
  • 实验(四):指令部件实验
  • 【Android11】在内置的Tvsettings的界面中显示以太网Mac地址
  • 在Oracle 11g 数据库上设置透明数据加密(TDE)
  • 互动直播 之 视频帧原始数据管理
  • 基于tcp协议及数据库sqlite3的云词典项目
  • C/C++内存管理(1):C/C++内存分布,C++内存管理方式
  • 11 redis中分布式锁的实现
  • 循环链表3
  • 如何修改百科内容?百度百科内容怎么修改?
  • mysql8.0英文OCP考试第131-140题