当前位置: 首页 > news >正文

U4_1:图论之DFS/BFS/TS/Scc

文章目录

  • 一、图的基本概念
  • 二、广度优先搜索(BFS)
    • 记录
    • 伪代码
    • 时间复杂度
    • 流程
    • 应用
  • 三、深度优先搜索(DFS)
    • 记录
    • 伪代码
    • 时间复杂度
    • 流程
    • 时间戳结构
    • BFS和DFS比较
  • 四、拓扑排序
    • 一些概念
      • 有向图
      • 作用
      • 拓扑排序
    • 分析
    • 伪代码
    • 时间复杂度
    • 彩蛋
  • 五、强连通分量-SCC
    • 分析
    • 伪代码
    • 时间复杂度

一、图的基本概念

由点(vertices)和边(edges)组成
G = ( V , E ) G=(V,E) G=(V,E) ∣ V ∣ = n |V|=n V=n, ∣ E ∣ = m |E|=m E=m (这里默认有向图,无向图用 G G G = = ={ V V V, E E E}表示

顶点的度是关联在其上的边的数量。满足 ∑ d e g r e e ( v ) = 2 ∣ E ∣ \sum degree(v)=2|E| degree(v)=2∣E(握手定理)

路径:一个序列 < V 0 , V 1 , . . . , V k > <V_0,V_1,...,V_k> <V0,V1,...,Vk> i = 1 , 2 , . . . , k i=1,2,...,k i=1,2,...,k满足 ( V i − 1 , V i ) (V_{i-1},V_i) (Vi1,Vi),序列中任意两点之间都是可达的。
简单路径:序列中所有顶点都是不同的。

环:一个路径 < V 0 , V 1 , . . . , V k > <V_0,V_1,...,V_k> <V0,V1,...,Vk>并且 V 0 = V k V_0=V_k V0=Vk并且路径上所有边都是不同的
简单环: V 1 , V 2 , . . . , V k V_1,V_2,...,V_k V1,V2,...,Vk是不同的。

连通:两个点之间存在路径。每个顶点对之间都连通,则这个图是连通的

连通分量:两点之间连通的最大集合的个数(等价类)。如下图:
在这里插入图片描述
子图: G ′ G' G的点和边都属于 G G G
诱导子图: G ′ G' G的点属于 G G G,且连接点的所有边都要属于 G ′ G' G

在这里插入图片描述

邻接表Adj:用链表连接每个点的边。因此是遍历了每个点和每条边,因此时间复杂度 T ( n ) = O ( V + E ) T(n)=O(V+E) T(n)=O(V+E)
在这里插入图片描述
邻接矩阵: A = [ a i j ] , a i j = 1 A=[a_{ij}],a_{ij}=1 A=[aij],aij=1   i f ( v i , v j ) 属于 E if(v_i,v_j)属于E if(vi,vj)属于E,否则 a i j = 0 a_{ij}=0 aij=0
因为不管怎样任意两点间有无边都要判断一遍,因此时间复杂度 T ( n ) = O ( V 2 ) T(n)=O(V^2) T(n)=O(V2)
在这里插入图片描述

二、广度优先搜索(BFS)

用处:遍历图中的所有顶点,从而显示图的属性

记录

三个数组用于保存遍历期间收集的信息。

  1. c o l o r [ u ] color[u] color[u]:访问的每个顶点的颜色
    W H I T E WHITE WHITE:未发现
    G R A Y GRAY GRAY:已发现但未完成处理
    B L A C K BLACK BLACK:已完成处理
  2. p r e d [ u ] pred[u] pred[u]:前一个指针:指向发现u的顶点
  3. d [ u ] d[u] d[u]:从源到顶点u的距离

伪代码

BFS(G)
for u in V docolor[u] ← WHITE;pred[u] ← NULL;
end
for u in V doif color[u] is equal to WHITE thenBFSVisit(u);end
endBFSVisit(s)
color[s] ← GRAY,d[s] ← 0;
set Q a queue
Enqueue(Q,s)
while Q is not empty dou ← Dequeue(Q)for v is belong to Adj[u] do   (邻接表遍历的)if(color[v] = WHITE) thencolor[u] ← GRAYd[v] ← d[u]+1pred[v] ← uEnqueue(Q,v)endendcolor[u] ← BLACK
end

时间复杂度

每一次循环遍历,都是遍历一个点和其边,且边遍历过了其他边就不会再遍历,因此
T ( n ) = ∑ O ( 1 + d e g r e e ( u ) ) = O ( V + E ) T(n)=\sum O(1+degree(u))=O(V+E) T(n)=O(1+degree(u))=O(V+E)

流程

一次BFSVisit,能将连通分量遍历完
在这里插入图片描述

应用

  1. 最短路径问题
  2. 查找连通分量

三、深度优先搜索(DFS)

用处:同样也是遍历图中的所有顶点,从而显示图的属性

记录

四个数组用于保存遍历期间收集的信息。

  1. c o l o r [ u ] color[u] color[u]:访问的每个顶点的颜色
    W H I T E WHITE WHITE:未发现
    G R A Y GRAY GRAY:已发现但未完成处理
    B L A C K BLACK BLACK:已完成处理
  2. p r e d [ u ] pred[u] pred[u]:前一个指针:指向发现u的顶点
  3. d [ u ] d[u] d[u]:发现时间。(设置一个全局变量时间发生器)
  4. f [ u ] f[u] f[u]:结束时间。一个计数器,指示顶点u(及其所有后代)的处理何时完成

伪代码

DFS(G)
for u in V docolor[u] ← WHITE;pred[u] ← NULL;
endtime  ← 0
for u in V doif color[u] is equal to WHITE thenDFSVisit(u);end
endDFSVisit(u)
color[u] ← GRAY,d[u] ← ++time;
set Q a queue
Enqueue(Q,s)
for v is belong to Adj[u] do   (邻接表遍历的)if(color[v] = WHITE) thenpred[v] ← uDFSVisit(v)end
end
color[u] ← BLACK
f[u] ← ++time;

时间复杂度

同样,每一次循环遍历,都是遍历一个点和其边,且边遍历过了其他边就不会再遍历,因此
T ( n ) = ∑ O ( 1 + d e g r e e ( u ) ) = O ( V + E ) T(n)=\sum O(1+degree(u))=O(V+E) T(n)=O(1+degree(u))=O(V+E)

流程

在这里插入图片描述

时间戳结构

在这里插入图片描述
由图可知, u u u v v v的后代(在 D F S DFS DFS树中),当且仅当 [ d [ u ] , f [ u ] ] [d[u],f [u]] [d[u],f[u]] [ d [ v ] , f [ v ] ] [d[v],f [v]] [d[v],f[v]]的子区间

树边: i f ( u , v ) ∈ E f if (u, v)∈E_f if(u,v)Ef等价 u = p r e d [ v ] u = pred[v] u=pred[v],即 u u u D F S DFS DFS树中 v v v的前身(图中蓝色边)
后边缘:如果 v v v D F S DFS DFS树中 u u u的祖先(不包括前身)(图中红色边)
有边就有祖先和后代的关系
在这里插入图片描述

BFS和DFS比较

BFS是发现点之后先处理,DFS是发现点之后不处理,继续往下去找其他的点。

四、拓扑排序

一些概念

有向图

有向图,区分边(u, v)和边(v, u)
顶点的出界度是离开它的边的数量,顶点的入界度是进入它的边的数量
每条边(u, v)对u的出阶贡献1次,对v的入阶贡献1次
∑ o u t − d e g r e e ( v ) = ∑ i n − d e g r e e ( v ) = ∣ E ∣ \sum out-degree(v)=\sum in-degree(v)=|E| outdegree(v)=indegree(v)=E

作用

有向图通常用于表示顺序相关的任务,也就是说,我们不能在另一个任务完成之前启动一个任务。
边(u, v)表示任务u完成后才能启动任务v。
显然,要使系统不挂起,图必须是无环的,它必须是有向无环图(或DAG)

拓扑排序

拓扑排序是一种针对有向无环图的算法,对顶点进行线性排序,使得对于DAG中的每条边(u, v), u在线性排序中出现在v之前。
它可能不是唯一的,因为有许多“不兼容”的元素。

分析

  1. 起始顶点入度必须为0,如果这样的顶点不存在,图就不是无环的。
  2. 一个入度为0的顶点是一个可以马上开始的任务。所以我们可以先以线性顺序输出它.
  3. 如果输出一个顶点u,那么所有的边(u, v)都不再有用,因为任务v不再需要等待u。
  4. 去掉顶点u后,新图仍然是一个有向无环图
  5. 重复步骤2-4,直到没有顶点留下

伪代码

Initialize Q to be an empty queue
for u is belong to V do thenif u.in_degree is equal to 0 thenEnqueue(Q,u)end
end
while Q is not empty dou ← Dequeue(Q)Output u;for v is belong to Adj(u) dov.in_degree ← v.in_degree-1if v,in_degree is equal to 0 thenEnqueue(Q,v)endend
end

时间复杂度

依旧是每条边和每个顶点都遍历一遍,因此时间复杂度 T ( n ) = O ( V + E ) T(n)=O(V+E) T(n)=O(V+E)

彩蛋

也可用DFS求出拓扑序列,对于每个有向边,都有 f [ u ] > f [ v ] f[u]>f[v] f[u]>f[v]

在时间O(V+E)内计算出 D A G DAG DAG(有向无环图)中的单源最短路径:动态规划

五、强连通分量-SCC

任意两点之间都有路径,再增加一个点都不满足这个关系。
任何两个强连通分量交集都为空
在这里插入图片描述
找到一个算法,求一个图得所有连通分量

分析

  1. 对G中所有边的方向进行反转,得到逆图GR。
  2. 执行DFS,并获得GR中顶点变黑的序列,即每当一个顶点从堆栈中弹出时,将其附加到序列 L R L^R LR中,将 L R L^R LR倒序得到序列L
  3. 对原图G执行DFS,规则如下
    规则1:从L的第一个顶点开始DFS
    规则2:当需要重新开始时,从L的第一个仍然是白色的顶点开始
    将每个dfs树中的顶点输出为SCC
    在这里插入图片描述

伪代码

R ← {}
Reverse G and get G'
DFS G' and get L'
reverse L' and get L
for u属于L doif color[u] is WHITE thenLscc ← DFSVisit(G,u)R ← RUSet(Lscc)end
end

时间复杂度

翻转边需要遍历每个点和边,时间复杂度为 O ( V + E ) O(V+E) O(V+E),DFS时间复杂度为 O ( V + E ) O(V+E) O(V+E),,然后还是依次遍历每个点和边,时间复杂度也是 O ( V + E ) O(V+E) O(V+E),因此总时间复杂度为 T ( n ) = O ( V + E ) T(n)=O(V+E) T(n)=O(V+E)

http://www.lryc.cn/news/238576.html

相关文章:

  • STM32框架之按键扫描新思路
  • 完美解决k8s master节点无法ping node节点中的IP或Service NodePort的IP
  • 弗洛伊德算法(C++)
  • 相对定位、绝对定位、固定定位、绝对定位堆叠顺序
  • px4+vio实现无人机室内定位
  • 享元模式 rust和java的实现
  • XmlElement注解在Java的数组属性上,以产生多个相同的XML元素
  • SQLServer 数字加千分位 用FORMAT函数强转不管多大位数
  • 说说mvc和mvvm的区别和联系
  • linux rsyslog综合实战2
  • AcWing 4. 多重背包问题 I 学习笔记
  • 解决selenium使用chrome下载文件(如pdf)时,反而打开浏览器的预览界面
  • 2024年山东省职业院校技能大赛中职组“网络安全”赛项竞赛试题-C
  • 基于Python实现用于实时监控和分析 MySQL 服务器的性能指标和相关信息工具源码
  • Android 10-13鼠标右键返回功能适配
  • 51单片机/STM32F103/STM32F407学习1_点亮LED灯
  • (Transfer Learning)迁移学习在IMDB上训练情感分析模型
  • 蓝桥杯每日一题2023.11.20
  • 【迅搜02】究竟什么是搜索引擎?正式介绍XunSearch
  • 【Sql】sql server还原数据库的时候,提示:因为数据库正在使用,所以无法获得对数据库的独占访问权。
  • 【Go语言实战】(26) 分布式搜索引擎
  • 【理解ARM架构】不同方式点灯 | ARM架构简介 | 常见汇编指令 | C与汇编
  • JS服务端技术—Node.js知识点锦集
  • 界面控件DevExpress WPF流程图组件,完美复制Visio UI!(一)
  • 为什么选择B+树作为数据库索引结构?
  • 什么是神经网络(Neural Network,NN)
  • 15 Go的并发
  • 管理体系标准
  • 【Java 进阶篇】揭秘 Jackson:Java 对象转 JSON 注解的魔法
  • ②【Hash】Redis常用数据类型:Hash [使用手册]