当前位置: 首页 > news >正文

多因素方差分析(Multi-way Analysis of Variance) R实现

1, data0507 flower 是某种植物在两个海拔和两个气温下的开花高度,采用合适 的统计方法,检验该种植物的开花高度在不同的海拔之间和不同的气温之间有无差异?如果有差异,具体如何差异的?(说明依据、结论等关键信息,包括计算过程中涉及的关键信息)

library(HH)  #HH包中的interaction2wt()可以同时展示主效应和交互效应

flower <- read.delim("D:/Datum/生物统计/data/data5/data0507 flower.txt")

flower

   Altitude Temperatyre Height
1         1           1  148.7
2         1           1  148.3
3         1           1  147.7
4         1           1  148.7
5         1           1  148.3
6         1           1  147.7
7         1           1  148.7
8         1           1  148.3
9         1           1  147.7
10        1           1  143.0
11        1           1  142.7
12        1           1  142.0
13        1           1  143.0
14        1           1  142.7
15        1           1  142.0
16        1           1  143.0
17        1           1  142.7
18        1           1  142.0
19        1           1  150.3
20        1           1  149.3
21        1           1  148.7
22        1           1  150.3
23        1           1  149.3
24        1           1  148.7
25        1           1  149.3
26        1           1  149.3
27        1           1  149.0
28        2           1  135.3
29        2           1  136.0
30        2           1  135.7
31        2           1  135.3
32        2           1  135.7
33        2           1  133.0
34        2           1  134.0
35        2           1  133.7
36        2           1  133.0
37        2           1  134.0
38        2           1  133.7
39        2           1  149.3
40        2           1  149.0
41        2           1  149.3
42        2           1  135.3
43        2           1  135.7
44        2           1  135.3
45        2           1  139.3
46        2           1  139.7
47        2           1  138.7
48        1           2  135.3
49        1           2  136.0
50        1           2  135.7
51        1           2  133.0
52        1           2  134.0
53        1           2  133.7
54        1           2  135.3
55        1           2  135.7
56        1           2  135.3
57        1           2  135.3
58        1           2  135.7
59        1           2  135.3
60        1           2  135.7
61        1           2  136.0
62        1           2  135.3
63        1           2  134.3
64        1           2  134.3
65        2           2  135.3
66        2           2  135.7
67        2           2  135.3
68        2           2  135.7
69        2           2  130.7
70        2           2  133.3
71        2           2  133.7
72        2           2  130.7
73        2           2  133.3
74        2           2  133.7
75        2           2  130.7
76        2           2  133.3
77        2           2  133.0
78        2           2  133.3
79        2           2  136.0
80        2           2  136.0
81        2           2  133.3
82        2           2  136.0
83        2           2  136.0
84        2           2  133.3
85        2           2  136.0
86        2           2  136.0
87        2           2  142.3

str(flower)  # 查看数据结构

summary(flower)  # 查看数据摘要统计量

plot(flower$Altitude, flower$Height)  # 绘制海拔与开花高度的散点图

plot(flower$Temperatyre, flower$Height)  # 绘制气温与开花高度的散点图

summary(aov(flower$Height~flower$Altitude*flower$Temperatyre))

#对于该植物的开花高度,海拔和气温之间有交互作用(F1,83=34.46,P<0.001)

#在控制了影响开花高度的海拔和气温的交互作用后,该种植物的开花高度在不同的海拔之间有极显著差异(F1,83=76.89,P<0.001)

#在控制了影响开花高度的海拔和气温的交互作用后,该种植物的开花高度在不同的气温之间有极显著差异(F1,83=100.52,小于0.001)

interaction2wt(flower$Height~flower$Altitude*flower$Temperatyre) #展示主效应和交互效应

#气温越高[从1到2],开花高度越低

#海拔越高[从1到2],开花高度越低

2, data0508 develop 是三种昆虫在七种条件下的生长期,采用合适的统计方法, 检验生长期在不同的物种之间和不同的条件之间有无差异?如果有差异,具体 如何差异的?(说明依据、结论等关键信息,包括计算过程中涉及的关键信息)

library(HH)  #HH包中的interaction2wt()可以同时展示主效应和交互效应

develop <- read.delim("D:/Datum/生物统计/data/data5/data0508 develop.txt")

develop

   Species Condition  Day
1        1         1  9.6
2        1         2 10.6
3        1         3  9.8
4        1         4 10.7
5        1         5 11.1
6        1         6 10.9
7        1         7 12.8
8        2         1  9.3
9        2         2  9.1
10       2         3  9.3
11       2         4  9.1
12       2         5 11.1
13       2         6 11.8
14       2         7 10.6
15       3         1  9.3
16       3         2  9.2
17       3         3  9.5
18       3         4 10.0
19       3         5 10.4
20       3         6 10.8
21       3         7 10.7

str(develop)  # 查看数据结构

summary(develop)  # 查看数据摘要统计量

plot(develop$Species, develop$Day)  # 绘制三种物种与昆虫生长期的散点图

plot(develop$Condition, develop$Day)  # 绘制七种条件与开花高度的散点图

# two fixed factors, full model

summary(aov(develop$Day~develop$Species*develop$Condition))

不存在交互作用

# two fixed factors, no interaction

summary(aov(develop$Day~develop$Species+develop$Condition))

#在控制了条件影响后,不同昆虫的生长期有显著差异(P=0.017,小于0.05)

#在控制了昆虫种类的影响后,处于不同条件下的昆虫测生长期有极显著差异(P=1.33e-05,小于0.001)

# two fixed factors, full model

summary.lm(aov(develop$Day~develop$Species+develop$Condition))

#对于物种影响(Species),物种 B,物种 C 具有较显著的负效应,即物种 B 物种 C 生长期较短,

#对于条件影响(Condition)ConditonC5, ConditonC6, ConditonC7 具有较显著的正效应,即 ConditonC5, ConditonC6, ConditonC7 生长期较长

interaction2wt(develop$Day~develop$Species+develop$Condition)  #查看主效应

#生长量:物种A>B>C(根据左下角图和summary.lm的结果)

#生长量:条件7>6>5>4>2>3>1(根据右上角图和summary.lm的结果)

http://www.lryc.cn/news/237984.html

相关文章:

  • git撤销某一次commit提交
  • 数据结构详细笔记——图
  • 黑马React18: 基础Part II
  • Maven工程继承关系,多个模块要使用同一个框架,它们应该是同一个版本,项目中使用的框架版本需要统一管理。
  • Selenium UI 自动化
  • 竞赛 题目:基于深度学习的图像风格迁移 - [ 卷积神经网络 机器视觉 ]
  • 【unity3D-网格编程】01:Mesh基础属性以及用代码创建一个三角形
  • Java贪吃蛇小游戏
  • Linux:系统基本信息扫描(1)
  • VR全景打造亮眼吸睛创意内容:三维模型、实景建模
  • ProTable高级表格获取表单数据
  • 力扣刷题第二十七天--二叉树
  • 一个快递包裹的跨国之旅
  • qsort函数使用方法总结
  • 机器学习介绍与分类
  • linux控制台命令
  • 快时尚品牌Halara登上TikTok美国小店榜Top 5,运动健身风靡TikTok
  • Docker 安装 Oracle Database 23c
  • 什么是美国服务器,有哪些优势,适用于什么场景?
  • TeXLive 2023安装教程
  • uniapp中swiper 轮播带左右箭头,点击切换轮播效果demo(整理)
  • 网络连接Android设备
  • Redis(位图Bitmap和位域Bitfield)
  • 【ArcGIS】批量对栅格图像按要素掩膜提取
  • 二进制安装minio 并实现主从同步
  • React中封装echarts图表组件以及自适应窗口变化
  • 鸿蒙:使用Stack、ContentTable、Flex等组件和布局实现一个显示界面
  • 3.生成验证码 + 开发登录、退出功能 + 显示登录信息
  • 基于龙格-库塔算法优化概率神经网络PNN的分类预测 - 附代码
  • 2022最新版-李宏毅机器学习深度学习课程-P51 BERT的各种变体