当前位置: 首页 > news >正文

归并排序详解:递归实现+非递归实现(图文详解+代码)

文章目录

  • 归并排序
        • 1.递归实现
        • 2.非递归实现
        • 3.海量数据的排序问题


归并排序


  • 时间复杂度:O ( N * logzN ) 每一层都是N,有log2N层
  • 空间复杂度:O(N),每个区间都会申请内存,最后申请的数组大小和array大小相同
  • 稳定性:稳定

目前为止,稳定的排序有:插入、冒泡、归并

  • 归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,采用了分治法

在这里插入图片描述

  • 将待排序列分解,先使每个子序列有序,再使子序列段间有序
  • 将已有序的子序列合并,得到完全有序的序列
  • 若将两个有序表合并成一个有序表,称为二路归并
1.递归实现

在这里插入图片描述

  • 1.确定递归的结束条件,求出中间数mid,
  • 2.进行分解,根据mid来确定递归的区间大小
  • 3.递归分解完左边,然后递归分解右边
  • 4.左右分解完成后,进行合并
  • 5.申请新数组进行合并,比较两个数组段,记得查漏补缺
  • 6.和并的时候要对齐下标,每个tmp的下标要找到array中对应的下标
/*** 归并排序* @param array*/public static void mergeSort(int[] array) {mergeSortFunc(array,0,array.length-1);}private static void mergeSortFunc(int[] array, int left, int right) {//结束条件if (left >= right) {return;}//进行分解int mid = (left + right) / 2;mergeSortFunc(array, left, mid);mergeSortFunc(array, mid + 1, right);//左右分解完成后,进行合并merge(array, left, right, mid);}//进行合并private static void merge(int[] array, int start, int end, int mid) {int s1 = start;int s2 = mid + 1;int[] tmp = new int[end - start + 1];int k = 0;//k为tmp数组的下标while (s1 <= mid && s2 <= end) {//两个数组中都有数据//进行比较,放到新申请的数组if (array[s1] <= array[s2]) {tmp[k++] = array[s1++];} else {tmp[k++] = array[s2++];}}//因为有&&条件,数组不一定走完while (s1 <= mid) {tmp[k++] = array[s1++];}while (s2 <= end) {tmp[k++] = array[s2++];}//此时,将排好的tmp数组的数组,拷贝到arrayfor (int i = 0; i < tmp.length; i++) {array[i+start] = tmp[i];//对齐下标}}
2.非递归实现

在这里插入图片描述

  • 1.从1开始分组,先保证每个数都是独立有序的
  • 2.进行循环,i下标从0开始,每次跳转组数的两倍
  • 3.根据left = i,求出mid和right
  • 4.要避免mid和right越界
  • 5.分组进行合并
  • 6.二倍数扩大组数
/**** 归并排序,非递归实现* @param array*/public static void mergeSort2(int[] array) {int gap = 1;while (gap < array.length) {//i += gap * 2 i每次跳到下一组for (int i = 0; i < array.length; i += gap * 2) {int left = i;//要避免mid和right越界int mid = left + gap - 1;if(mid>=array.length){mid = array.length-1;//修正越界的情况}int right = mid + gap;if (right>=array.length){//修正越界的情况right = array.length-1;}merge(array,left,right,mid);//进行合并}gap *=2;//2倍数扩大组数}}//进行合并private static void merge(int[] array, int start, int end, int mid) {int s1 = start;int s2 = mid + 1;int[] tmp = new int[end - start + 1];int k = 0;//k为tmp数组的下标while (s1 <= mid && s2 <= end) {//两个数组中都有数据//进行比较,放到新申请的数组if (array[s1] <= array[s2]) {tmp[k++] = array[s1++];} else {tmp[k++] = array[s2++];}}//因为有&&条件,数组不一定走完while (s1 <= mid) {tmp[k++] = array[s1++];}while (s2 <= end) {tmp[k++] = array[s2++];}//此时,将排好的tmp数组的数组,拷贝到arrayfor (int i = 0; i < tmp.length; i++) {array[i + start] = tmp[i];//对齐下标}}
3.海量数据的排序问题

外部排序:排序过程需要在磁盘等外部存储进行的排序

前提:内存只有 1G,需要排序的数据有 100G

因为内存中因为无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序

  1. 先把文件切分成 200 份,每个 512 M
  2. 分别对 512 M 排序,因为内存已经可以放的下,所以任意排序方式都可以
  3. 进行 2路归并,同时对 200 份有序文件做归并过程,最终结果就有序了

点击移步博客主页,欢迎光临~

偷cyk的图

http://www.lryc.cn/news/237126.html

相关文章:

  • DataBinding原理
  • docker更换国内源
  • 【咖啡品牌分析】Google Maps数据采集咖啡市场数据分析区域分析热度分布分析数据抓取瑞幸星巴克
  • 【Java】异常处理(一)
  • 【高级程序设计】Week2-4Week3-1 JavaScript
  • PHP笔记-->读取JSON数据以及获取读取到的JSON里边的数据
  • 【Spring Boot】如何集成Redis
  • Elasticsearch备份与还原:使用elasticdump
  • 给大伙讲个笑话:阿里云服务器开了安全组防火墙还是无法访问到服务
  • js:react使用zustand实现状态管理
  • vue3+vite+SQL.js 读取db3文件数据
  • 微信小程序 限制字数文本域框组件封装
  • 阿里国际站(直通车)
  • C# GC机制
  • wpf devexpress在未束缚模式中生成Tree
  • Python利器:os与chardet读取多编码文件
  • 微服务和注册中心
  • 吴恩达《机器学习》9-1-9-3:反向传播算法、反向传播算法的直观理解
  • Java 算法篇-链表的经典算法:判断回文链表、判断环链表与寻找环入口节点(“龟兔赛跑“算法实现)
  • 【JS】Chapter13-构造函数数据常用函数
  • 06-流媒体-YUV数据在SDL控件显示
  • 对象和数据结构
  • ESP32-BLE基础知识
  • vscode终端npm install报错
  • 雪花算法的使用
  • flink源码分析之功能组件(一)-metrics
  • Nginx反向代理和负载均衡
  • 基于SSM的供电公司安全生产考试系统设计与实现
  • 大数据-之LibrA数据库系统告警处理(ALM-12055 证书文件即将过期)
  • 应试教育导致学生迷信标准答案惯性导致思维僵化-移动机器人