当前位置: 首页 > news >正文

rasa train nlu详解:1.1-train_nlu()函数

  本文使用《使用ResponseSelector实现校园招聘FAQ机器人》中的例子,主要详解介绍train_nlu()函数中变量的具体值。

一.rasa/model_training.py/train_nlu()函数
  train_nlu()函数实现,如下所示:

def train_nlu(config: Text,nlu_data: Optional[Text],output: Text,fixed_model_name: Optional[Text] = None,persist_nlu_training_data: bool = False,additional_arguments: Optional[Dict] = None,domain: Optional[Union[Domain, Text]] = None,model_to_finetune: Optional[Text] = None,finetuning_epoch_fraction: float = 1.0,
) -> Optional[Text]:"""Trains an NLU model.  # 训练一个NLU模型。Args:config: Path to the config file for NLU.  # NLU的配置文件路径。nlu_data: Path to the NLU training data.  # NLU训练数据的路径。output: Output path.  # 输出路径。fixed_model_name: Name of the model to be stored.  # 要存储的模型的名称。persist_nlu_training_data: `True` if the NLU training data should be persisted with the model.  # 如果NLU训练数据应该与模型一起持久化,则为`True`。additional_arguments: Additional training parameters which will be passed to the `train` method of each component.  # 将传递给每个组件的`train`方法的其他训练参数。domain: Path to the optional domain file/Domain object.  # 可选domain文件/domain对象的路径。model_to_finetune: Optional path to a model which should be finetuned or a directory in case the latest trained model should be used.  # 可选路径,指向应该进行微调的模型,或者在应该使用最新训练的模型的情况下指向一个目录。finetuning_epoch_fraction: The fraction currently specified training epochs in the model configuration which should be used for finetuning.  # 模型配置中当前指定的训练时期的fraction,应该用于微调。Returns:Path to the model archive.  # 模型归档的路径。"""if not nlu_data:  # 没有NLU数据rasa.shared.utils.cli.print_error(  # 打印错误"No NLU data given. Please provide NLU data in order to train "  # 没有给出NLU数据。请提供NLU数据以训练"a Rasa NLU model using the '--nlu' argument."  # 使用--nlu参数训练Rasa NLU模型)return None# 只训练NLU,因此仍然必须选择训练文件file_importer = TrainingDataImporter.load_nlu_importer_from_config(config, domain, training_data_paths=[nlu_data], args=additional_arguments)training_data = file_importer.get_nlu_data()  # 获取NLU数据if training_data.contains_no_pure_nlu_data():  # 如果没有纯NLU数据rasa.shared.utils.cli.print_error(  # 打印错误f"Path '{nlu_data}' doesn't contain valid NLU data in it. "  # 路径{nlu_data}中不包含有效的NLU数据f"Please verify the data format. "  # 请验证数据格式f"The NLU model training will be skipped now."  # 现在将跳过NLU模型训练)return Nonereturn _train_graph(  # 训练图file_importer,  # 文件导入器training_type=TrainingType.NLU,  # 训练类型output_path=output,  # 输出路径model_to_finetune=model_to_finetune,  # 模型微调fixed_model_name=fixed_model_name,  # 固定模型名称finetuning_epoch_fraction=finetuning_epoch_fraction,  # 微调时期fractionpersist_nlu_training_data=persist_nlu_training_data,  # 持久化NLU训练数据**(additional_arguments or {}),  # 额外的参数).model  # 模型

1.传递来的形参数据
  形参config=“config.yml”,nlu_data=“data”,output=“models”,persist_nlu_training_data=False,其它的都是None,如下所示:

2.train_nlu()函数组成
  该函数主要由3个方法组成,如下所示:

  • file_importer = TrainingDataImporter.load_nlu_importer_from_config(*) #file_importer数据类型为NluDataImporter
  • training_data = file_importer.get_nlu_data() #根据nlu数据创建一个TrainingData类对象
  • return _train_graph(*) #训练config.yml文件中pipline对应的图

二.training_data数据类型
  training_data数据类型为rasa.shared.nlu.training_data.training_data.TrainingData,如下所示:

1.MIN_EXAMPLES_PER_ENTITY=2
每个实体的最小样本数量。

2.MIN_EXAMPLES_PER_INTENT=2
每个意图的最小样本数量。

3.action_names=set()
action名字集合。

4.entities=set()
entity集合。

5.entity_examples=[]
entity例子集合。

6.entity_groups=set()
entity组的集合。

7.entity_roles=set()
entity角色集合。

8.entity_synonyms=set()
entity近义词集合。

9.intent_examples=[25*Message]
  intent例子列表,列表中数据为rasa.shared.nlu.training_data.message.Message数据结构。对于普通意图,Message数据结构如下所示:

  对于检索意图,Message数据结构如下所示:

10.intents
具体数值为set(‘faq’, ‘goodbye’, ‘greet’)。

11.lookup_tables=[]
查找表。

12.nlu_examples=[25*Message]
内容和intent_examples相同,不再介绍。

13.number_of_examples_per_entity
每个entity例子的数量。

14.number_of_examples_per_intent
每个intent例子的数量,即{‘faq’: 14, ‘goodbye’: 5, ‘greet’: 6}。

15.number_of_examples_per_response
  每个response例子的数量,如下所示:

{'faq/notes': 1, 'faq/work_location': 1, 'faq/max_job_request': 1, 'faq/audit': 1, 'faq/write_exam_participate': 1, 'faq/write_exam_location': 1, 'faq/write_exam_again': 1, 'faq/write_exam_with-out-offer': 1, 'faq/interview_arrangement': 1, 'faq/interview_times': 1, 'faq/interview_from': 1, 'faq/interview_clothing': 1, 'faq/interview_paperwork': 1, 'faq/interview_result': 1}  

16.regex_features=[]
正则特征。

17.response_examples=[14*Message]
  response例子,如下所示:

18.responses
  response例子,如下所示:

19.retrieval_intents=set(‘faq’)
检索意图。

20.training_examples=[25*Message]
内容和intent_examples相同,不再介绍。

参考文献:
[1]https://github.com/RasaHQ/rasa
[2]rasa 3.2.10 NLU模块的训练:https://zhuanlan.zhihu.com/p/574935615

http://www.lryc.cn/news/226353.html

相关文章:

  • 使用ResponseSelector实现校园招聘FAQ机器人
  • ENVI IDL:如何基于气象站点数据进行反距离权重插值?
  • 实战Leetcode(四)
  • C语言——个位数为 6 且能被 3 整除但不能被 5 整除的三位自然数共有多少个,分别是哪些?
  • 基于Docker容器DevOps应用方案
  • Apinto 网关进阶教程,使用 API Mock 生成模拟数据
  • 笔记:AI量化策略开发流程-基于BigQuant平台(一)
  • Spring Cloud 微服务入门篇
  • 使用Go语言搭建区块链基础
  • 手搓MyBatis框架(原理讲解)
  • FRC-EP系列--你的汽车数据一站式管家
  • 【ARM Trace32(劳特巴赫) 使用介绍 3 - trace32 访问运行时的内存】
  • VirtualBox网络地址转换(NAT),宿主机无法访问虚拟机的问题
  • 【操作系统】考研真题攻克与重点知识点剖析 - 第 2 篇:进程与线程
  • 总结:利用原生JDK封装工具类,解析properties配置文件以及MF清单文件
  • openGauss学习笔记-119 openGauss 数据库管理-设置数据库审计-设置文件权限安全策略
  • 不可否认程序员的护城河已经越来越浅了
  • 黑客技术-小白自学
  • ZYNQ_project:key_beep
  • css3文字环绕旋转
  • Linux 进程优先级 | 环境变量
  • Nginx(五)
  • 永达理简析:利用保险的“财务规划”功能维持退休后生活水平
  • 拓展认知边界:如何给大语言模型添加额外的知识
  • C语言assert断言
  • 开发模型(瀑布、螺旋、scrum) 和 测试模型(V、W)、增量和迭代、敏捷(思想)及敏捷开发 scrum
  • [蓝桥杯复盘] 第 3 场双周赛20231111
  • 浅析移动端车牌识别技术的工作原理及其过程
  • 计算机网络期末复习-Part4
  • 解决EnableKeyword(“_Emission“)运行状态不起作用