当前位置: 首页 > news >正文

适用于4D毫米波雷达的目标矩形框聚类

目录

一、前言

二、点云聚类分割

三、基于方位搜索L型拟合

四、评价准则之面积最小化

五、评价准则之贴合最大化

六、评价准则之方差最小化


 

3da15d2e63e047c9a39ad39831be0075.png

一、前言

对于多线束雷达可以获取目标物体更全面的面貌,在道路中前向或角雷达可能无法获取目标车矩形框但可以扫到两边或者一边,在做目标方向估计时这些信息至关重要。看到一篇文章不错的思路,拿来记录借鉴下。

整体算法:
Step1: 将距离点按照预先设定的距离阈值进行聚类划分簇
Step2:基于方位搜索+特定准则进行L型拟合,得出4边参数
2.1 矩形面积最小化
2.2 点到边靠近最大化
2.3 点到边方差最小化

二、点云聚类分割

对于所有点,在距离r一点内找到它的相邻点,将相邻点设置为未检测,对未检测点继续找到距离r内的任何一个点,把邻近点放在这个簇中直到集群不再增长。

afe7f40da3d2461b9b171fd9a93dd7cd.png

def _adoptive_range_segmentation(self, ox, oy):# Setup initial clustersegment_list = []for i, _ in enumerate(ox):c = set()r = self.R0 + self.Rd * np.linalg.norm([ox[i], oy[i]])for j, _ in enumerate(ox):d = np.hypot(ox[i] - ox[j], oy[i] - oy[j])if d <= r:c.add(j)segment_list.append(c)# Merge clusterwhile True:no_change = Truefor (c1, c2) in list(itertools.permutations(range(len(segment_list)), 2)):if segment_list[c1] & segment_list[c2]:segment_list[c1] = (segment_list[c1] | segment_list.pop(c2))no_change = Falsebreakif no_change:breakreturn segment_list

 

三、基于方位搜索L型拟合

80db7156348e427c8728232643489652.png

dec3357dea4545cc8dba368502134009.png

step2:基于方位搜索的L 型拟合

遍历矩形的所有可能方向;在每次迭代中,可以找到一个该方向并包含所有扫描点的矩形;进一步可以得到所有点到矩形四条边的距离,并根据这些距离将点分为P和Q,并计算相应的平方误差作为(1)中的目标函数;在迭代所有方向并获得所有相应的平方误差后,寻找实现最小平方误差的最优方向,并根据该方向拟合矩形

22c4e7b4cc9e40dcacb79cd1621fee38.png

def _rectangle_search(self, x, y):xy = np.array([x, y]).Td_theta = np.deg2rad(self.d_theta_deg_for_search)min_cost = (-float('inf'), None)for theta in np.arange(0.0, np.pi / 2.0 - d_theta, d_theta):c = xy @ rot_mat_2d(theta)c1 = c[:, 0]c2 = c[:, 1]# Select criteriacost = 0.0if self.criteria == self.Criteria.AREA:cost = self._calc_area_criterion(c1, c2)elif self.criteria == self.Criteria.CLOSENESS:cost = self._calc_closeness_criterion(c1, c2)elif self.criteria == self.Criteria.VARIANCE:cost = self._calc_variance_criterion(c1, c2)if min_cost[0] < cost:min_cost = (cost, theta)# calc best rectanglesin_s = np.sin(min_cost[1])cos_s = np.cos(min_cost[1])c1_s = xy @ np.array([cos_s, sin_s]).Tc2_s = xy @ np.array([-sin_s, cos_s]).Trect = RectangleData()rect.a[0] = cos_srect.b[0] = sin_srect.c[0] = min(c1_s)rect.a[1] = -sin_srect.b[1] = cos_srect.c[1] = min(c2_s)rect.a[2] = cos_srect.b[2] = sin_srect.c[2] = max(c1_s)rect.a[3] = -sin_srect.b[3] = cos_srect.c[3] = max(c2_s)return rect

 

四、评价准则之面积最小化

a1cfde486c4943778a0e82a655695eb8.png

def _calc_area_criterion(c1, c2):c1_max, c1_min, c2_max, c2_min = LShapeFitting._find_min_max(c1, c2)alpha = -(c1_max - c1_min) * (c2_max - c2_min)return alpha

 

五、评价准则之贴合最大化

f211f7c1262c4bf58064bb454ff0e3c4.png

def _calc_closeness_criterion(self, c1, c2):c1_max, c1_min, c2_max, c2_min = LShapeFitting._find_min_max(c1, c2)# Vectorizationd1 = np.minimum(c1_max - c1, c1 - c1_min)d2 = np.minimum(c2_max - c2, c2 - c2_min)d = np.maximum(np.minimum(d1, d2), self.min_dist_of_closeness_criteria)beta = (1.0 / d).sum()return beta

六、评价准则之方差最小化

0d70e1efa8b144a7b8e136647ddb8ed3.png

def _calc_variance_criterion(c1, c2):c1_max, c1_min, c2_max, c2_min = LShapeFitting._find_min_max(c1, c2)# Vectorizationd1 = np.minimum(c1_max - c1, c1 - c1_min)d2 = np.minimum(c2_max - c2, c2 - c2_min)e1 = d1[d1 < d2]e2 = d2[d1 >= d2]v1 = - np.var(e1) if len(e1) > 0 else 0.v2 = - np.var(e2) if len(e2) > 0 else 0.gamma = v1 + v2return gamma

 

Result:

1fb1bca4ecd647febd4ef8a1b9b25d69.png

 

 

 

参考:《Efficient L-Shape Fitting for Vehicle Detection Using Laser Scanners》

 

 

 

 

http://www.lryc.cn/news/226253.html

相关文章:

  • [模版总结] - 树的基本算法1 - 遍历
  • macOS Sonoma 14.2beta2(23C5041e)发布(附黑白苹果镜像地址)
  • Docker进阶——再次认识docker的概念 Docker的结构 Docker镜像结构 镜像的构建方式
  • postgis函数学习
  • 【Gradle-12】分析so文件和依赖的关系
  • vue项目pdf文件的预览
  • 企业计算机中了mkp勒索病毒怎么办,服务器中了勒索病毒如何处理
  • Android拖放startDragAndDrop拖拽Glide加载堆叠圆角图,Kotlin(5)
  • 1994-2021年分行业二氧化碳排放量数据
  • 如何进行Go程序的打包发布
  • python工具HIKVISION视频编码设备接入网关任意文件下载
  • [NLP] 使用Llama.cpp和LangChain在CPU上使用大模型
  • 开发知识点-Ant-Design-Vue
  • 2022最新版-李宏毅机器学习深度学习课程-P50 BERT的预训练和微调
  • Android codec2 视频框架 之输入buffer
  • Python实现局部二进制算法(LBP)
  • 如何评价现在的CSGO游戏搬砖市场
  • ResourceQuota对象在K8s上的说明
  • 悟空crm二次开发 增加客户保护功能 (很久没有消息,但是有觉得有机会的客户)就进入了保护转态
  • k8s之配置资源管理
  • 赛氪助力全国大学生数学竞赛山东赛区圆满举办
  • pytorch基础语法问题
  • 【面试经典150 | 】颠倒二进制位
  • 十分钟了解自动化测试
  • Redis配置文件
  • [量化投资-学习笔记009]Python+TDengine从零开始搭建量化分析平台-KDJ
  • Activiti6工作流引擎:Form表单
  • Fortran 中的指针
  • 第七章 块为结构建模 P4|系统建模语言SysML实用指南学习
  • 提升中小企业效率的不可或缺的企业云盘网盘