当前位置: 首页 > news >正文

Flink SQL -- 命令行的使用

1、启动Flink SQL
首先启动Flink的集群,选择独立集群模式或者是session的模式。此处选择是时session的模式:yarn-session.sh -d 在启动Flink SQL的client:
sql-client.sh
2、kafka SQL 连接器
在使用kafka作为数据源的时候需要上传jar包到flnik的lib下:/usr/local/soft/flink-1.15.2/lib可以去官网找对应的版本下载上传。

 

1、创建表:再流上定义表
再flink中创建表相当于创建一个视图(视图中不存数据,只有查询视图时才会去原表中读取数据)CREATE TABLE students (sid STRING,name STRING,age INT,sex STRING,clazz STRING    
) WITH ('connector' = 'kafka','topic' = 'student','properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092','properties.group.id' = 'testGroup','scan.startup.mode' = 'earliest-offset','format' = 'csv'
)2、查询数据(连续查询):select clazz,count(1) as c from students group by clazz;
3、客户端为维护和可视化结果提供了三种的模式:

        1、表格模式(默认使用的模式),(table mode),在内存中实体化结果,并将结果用规则的分页表格可视化展示出来

SET 'sql-client.execution.result-mode' = 'table';

        2、变更日志模式,(changelog mode),不会实体化和可视化结果,而是由插入(+)和撤销(-)组成的持续查询产生结果流。

SET 'sql-client.execution.result-mode' = 'changelog';

        3、Tableau模式(tableau mode)更接近传统的数据库,会将执行的结果以制表的形式直接打在屏幕之上。具体显示的内容会取决于作业 执行模式的不同(execution.type):

SET 'sql-client.execution.result-mode' = 'tableau';

4、 Flink SQL流批一体:
        1、流处理:

                a、流处理即可以处理有界流也可以处理无界流

                b、流处理的输出的结果是连续的结果

                c、流处理的底层是持续流的模型,上游的Task和下游的Task同时启动等待数据的到达

SET 'execution.runtime-mode' = 'streaming'; 
        2、批处理:

                a、批处理只能用于处理有界流

                b、输出的是最终的结果

                c、批处理的底层是MapReduce模型,会先执行上游的Task,在执行下游的Task 

SET 'execution.runtime-mode' = 'batch';
Flink做批处理,读取一个文件:-- 创建一个有界流的表
CREATE TABLE students_hdfs (sid STRING,name STRING,age INT,sex STRING,clazz STRING
)WITH ('connector' = 'filesystem',           -- 必选:指定连接器类型'path' = 'hdfs://master:9000/data/spark/stu/students.txt',  -- 必选:指定路径'format' = 'csv'                     -- 必选:文件系统连接器指定 format
);select clazz,count(1) as c from 
students_hdfs
group by clazz
5、Flink SQL的连接器:
        1、kafka SQL 连接器

对于一些参数需要从官网进行了解。

                1、kafka source 

-- 创建kafka 表
CREATE TABLE students_kafka (`offset` BIGINT METADATA VIRTUAL, -- 偏移量`event_time` TIMESTAMP(3) METADATA FROM 'timestamp', --数据进入kafka的时间,可以当作事件时间使用sid STRING,name STRING,age INT,sex STRING,clazz STRING
) WITH ('connector' = 'kafka','topic' = 'students', -- 数据的topic'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- broker 列表'properties.group.id' = 'testGroup', -- 消费者组'scan.startup.mode' = 'earliest-offset', -- 读取数据的位置earliest-offset latest-offset'format' = 'csv' -- 读取数据的格式
);

                2、kafka sink 

-- 创建kafka 表
CREATE TABLE students_kafka_sink (sid STRING,name STRING,age INT,sex STRING,clazz STRING
) WITH ('connector' = 'kafka','topic' = 'students_sink', -- 数据的topic'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- broker 列表'properties.group.id' = 'testGroup', -- 消费者组'scan.startup.mode' = 'earliest-offset', -- 读取数据的位置earliest-offset latest-offset'format' = 'csv' -- 读取数据的格式
);-- 将查询结果保存到kafka中
insert into students_kafka_sink
select * from students_hdfs;kafka-console-consumer.sh --bootstrap-server  master:9092,node1:9092,node2:9092 --from-beginning --topic students_sink

        3、将更新的流写入到kafka中 

因为在Kafka是一个消息队列,是不会去重的。所以只需要将读取数据的格式改成canal-json。当数据被读取回来还是原来的流模式。

CREATE TABLE clazz_num_kafka (clazz STRING,num BIGINT
) WITH ('connector' = 'kafka','topic' = 'clazz_num', -- 数据的topic'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- broker 列表'properties.group.id' = 'testGroup', -- 消费者组'scan.startup.mode' = 'earliest-offset', -- 读取数据的位置earliest-offset latest-offset'format' = 'canal-json' -- 读取数据的格式
);-- 将更新的数据写入kafka需要使用canal-json格式,数据中会带上操作类型
{"data":[{"clazz":"文科一班","num":71}],"type":"INSERT"}
{"data":[{"clazz":"理科三班","num":67}],"type":"DELETE"}insert into clazz_num_kafka
select clazz,count(1) as num from 
students
group by clazz;kafka-console-consumer.sh --bootstrap-server  master:9092,node1:9092,node2:9092 --from-beginning --topic clazz_num
        2、 hdfs SQL 连接器

                1、hdfs source

                        Flink读取文件可以使用有界流的方式,也可以是无界流方式。

-- 有界流
CREATE TABLE students_hdfs_batch (sid STRING,name STRING,age INT,sex STRING,clazz STRING
)WITH ('connector' = 'filesystem',           -- 必选:指定连接器类型'path' = 'hdfs://master:9000/data/student',  -- 必选:指定路径'format' = 'csv'                     -- 必选:文件系统连接器指定 format
);select * from students_hdfs_batch;-- 无界流
-- 基于hdfs做流处理,读取数据是以文件为单位,延迟比kafka大
CREATE TABLE students_hdfs_stream (sid STRING,name STRING,age INT,sex STRING,clazz STRING
)WITH ('connector' = 'filesystem',           -- 必选:指定连接器类型'path' = 'hdfs://master:9000/data/student',  -- 必选:指定路径'format' = 'csv' ,                    -- 必选:文件系统连接器指定 format'source.monitor-interval' = '5000' -- 每隔一段时间扫描目录,生成一个无界流
);select * from students_hdfs_stream;

                2、hdfs sink

-- 1、批处理模式(使用方式和底层原理和hive类似)
SET 'execution.runtime-mode' = 'batch';-- 创建表
CREATE TABLE clazz_num_hdfs (clazz STRING,num BIGINT
)WITH ('connector' = 'filesystem',           -- 必选:指定连接器类型'path' = 'hdfs://master:9000/data/clazz_num',  -- 必选:指定路径'format' = 'csv'                     -- 必选:文件系统连接器指定 format
);
-- 将查询结果保存到表中
insert into clazz_num_hdfs
select clazz,count(1) as num
from students_hdfs_batch
group by clazz;-- 2、流处理模式
SET 'execution.runtime-mode' = 'streaming'; -- 创建表,如果查询数据返回的十更新更改的流需要使用canal-json格式
CREATE TABLE clazz_num_hdfs_canal_json (clazz STRING,num BIGINT
)WITH ('connector' = 'filesystem',           -- 必选:指定连接器类型'path' = 'hdfs://master:9000/data/clazz_num_canal_json',  -- 必选:指定路径'format' = 'canal-json'                     -- 必选:文件系统连接器指定 format
);insert into clazz_num_hdfs_canal_json
select clazz,count(1) as num
from students_hdfs_stream
group by clazz;
3、MySQL SQL 连接器

        1、整合:

# 1、上传依赖包到flink 的lib目录下/usr/local/soft/flink-1.15.2/lib
flink-connector-jdbc-1.15.2.jar
mysql-connector-java-5.1.49.jar# 2、需要重启flink集群
yarn application -kill [appid]
yarn-session.sh -d# 3、重新进入sql命令行
sql-client.sh

         2、mysql   source 

-- 有界流
-- flink中表的字段类型和字段名需要和mysql保持一致
CREATE TABLE students_jdbc (id BIGINT,name STRING,age BIGINT,gender STRING,clazz STRING,PRIMARY KEY (id) NOT ENFORCED -- 主键
) WITH ('connector' = 'jdbc','url' = 'jdbc:mysql://master:3306/student','table-name' = 'students','username' ='root','password' ='123456'
);select * from students_jdbc;

        3、mysql sink 

-- 创建kafka 表
CREATE TABLE students_kafka (`offset` BIGINT METADATA VIRTUAL, -- 偏移量`event_time` TIMESTAMP(3) METADATA FROM 'timestamp', --数据进入kafka的时间,可以当作事件时间使用sid STRING,name STRING,age INT,sex STRING,clazz STRING
) WITH ('connector' = 'kafka','topic' = 'students', -- 数据的topic'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- broker 列表'properties.group.id' = 'testGroup', -- 消费者组'scan.startup.mode' = 'earliest-offset', -- 读取数据的位置earliest-offset latest-offset'format' = 'csv' -- 读取数据的格式
);-- 创建mysql sink表
CREATE TABLE clazz_num_mysql (clazz STRING,num BIGINT,PRIMARY KEY (clazz) NOT ENFORCED -- 主键
) WITH ('connector' = 'jdbc','url' = 'jdbc:mysql://master:3306/student','table-name' = 'clazz_num','username' ='root','password' ='123456'
);--- 再mysql创建接收表
CREATE TABLE clazz_num (clazz varchar(10),num BIGINT,PRIMARY KEY (clazz) -- 主键
) ;-- 将sql查询结果实时写入mysql
-- 将更新更改的流写入mysql,flink会自动按照主键更新数据
insert into clazz_num_mysql
select 
clazz,
count(1) as num from 
students_kafka
group by clazz;kafka-console-producer.sh --broker-list master:9092,node1:9092,node2:9092 --topic students 插入一条数据
        4、DataGen:用于生成随机数据,一般用在高性能测试上
-- 创建包(只能用于source表)
CREATE TABLE students_datagen (sid STRING,name STRING,age INT,sex STRING,clazz STRING
) WITH ('connector' = 'datagen','rows-per-second'='5', -- 每秒随机生成的数据量'fields.age.min'='1','fields.age.max'='100','fields.sid.length'='10','fields.name.length'='2','fields.sex.length'='1','fields.clazz.length'='4'
);

        5、print:用于高性能测试 只能用于sink表
CREATE TABLE print_table (sid STRING,name STRING,age INT,sex STRING,clazz STRING
) WITH ('connector' = 'print'
);insert into print_table
select * from students_datagen;结果需要在提交的任务中查看。
        6、BlackHole :是用于高性能测试使用,在后面可以用于Flink的反压的测试。
CREATE TABLE blackhole_table (sid STRING,name STRING,age INT,sex STRING,clazz STRING
) WITH ('connector' = 'blackhole'
);insert into blackhole_table
select * from students_datagen;
6、SQL 语法
        1、Hints:

               用于提示执行,在Flink中可以动态的修改表中的属性,在Spark中可以用于广播。在修改动态表中属性后,不需要在重新建表,就可以读取修改后的需求。

CREATE TABLE students_kafka (`offset` BIGINT METADATA VIRTUAL, -- 偏移量`event_time` TIMESTAMP(3) METADATA FROM 'timestamp', --数据进入kafka的时间,可以当作事件时间使用sid STRING,name STRING,age INT,sex STRING,clazz STRING
) WITH ('connector' = 'kafka','topic' = 'students', -- 数据的topic'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- broker 列表'properties.group.id' = 'testGroup', -- 消费者组'scan.startup.mode' = 'latest-offset', -- 读取数据的位置earliest-offset latest-offset'format' = 'csv' -- 读取数据的格式
);-- 动态修改表属性,可以在查询数据时修改读取kafka数据的位置,不需要重新创建表
select * from students_kafka /*+ OPTIONS('scan.startup.mode' = 'earliest-offset') */;-- 有界流
CREATE TABLE students_hdfs (sid STRING,name STRING,age INT,sex STRING,clazz STRING
)WITH ('connector' = 'filesystem',           -- 必选:指定连接器类型'path' = 'hdfs://master:9000/data/student',  -- 必选:指定路径'format' = 'csv'                     -- 必选:文件系统连接器指定 format
);-- 可以在查询hdfs时,不需要再重新的创建表就可以动态改成无界流
select * from students_hdfs /*+ OPTIONS('source.monitor-interval' = '5000' )  */;
         2、WITH:

                当一段SQL语句在被多次使用的时候,就将通过with给这个SQL起一个别名,类似于封装起来,就是为这个SQL创建一个临时的视图(并不是真正的视图),方便下次使用。

CREATE TABLE students_hdfs (sid STRING,name STRING,age INT,sex STRING,clazz STRING
)WITH ('connector' = 'filesystem',           -- 必选:指定连接器类型'path' = 'hdfs://master:9000/data/student',  -- 必选:指定路径'format' = 'csv'                     -- 必选:文件系统连接器指定 format
);-- 可以在查询hdfs时,不需要再重新的创建表就可以动态改成无界流
select * from students_hdfs /*+ OPTIONS('source.monitor-interval' = '5000' )  */;-- tmp别名代表的时子查询的sql,可以在后面的sql中多次使用
with tmp as (select * from students_hdfs /*+ OPTIONS('source.monitor-interval' = '5000' )  */where clazz='文科一班'
)
select * from tmp
union all
select * from tmp;
        3、DISTINCT:

在flink 的流处理中,使用distinct,flink需要将之前的数据保存在状态中,如果数据一直增加,状态会越来越大 状态越来越大,checkpoint时间会增加,最终会导致flink任务出问题

select 
count(distinct sid) 
from students_kafka /*+ OPTIONS('scan.startup.mode' = 'earliest-offset') */;select count(sid)  
from (select distinct *from students_kafka /*+ OPTIONS('scan.startup.mode' = 'earliest-offset') */
);

注意事项:

       1、 当Flink Client客户端退出来以后,里面创建的动态表就不存在了。这些表结构是元数据,是存储在内存中的。

        2、当在进行where过滤的时候,字符串会出现三种情况:空的字符串、空格字符串、null的字符串,三者是有区别的:

        这三者是不同的概念,在进行where过滤的时候过滤的条件是不同的。

1、过滤空的字符串:where s!= ‘空字符串’2、过滤空格字符串:where s!= ‘空格’3、过滤null字符串:where s!= null
Flink SQL中常见的函数:from_unixtime: 以字符串格式 string 返回数字参数 numberic 的表示形式(默认为 ‘yyyy-MM-dd HH:mm:ss’to_timestamp:  将格式为 string2(默认为:‘yyyy-MM-dd HH:mm:ss’)的字符串 string1 转换为 timestamp

http://www.lryc.cn/news/225706.html

相关文章:

  • asp.net core把所有接口和实现类批量注入到容器
  • SPSS曲线回归
  • 软件之禅(七)面向对象(Object Oriented)
  • 汽车之家车型_车系_配置参数数据抓取
  • RabbitMQ的 五种工作模型
  • 原型制作神器ProtoPie的使用Unity与网页跨端交互
  • 另辟奚径-Android Studio调用Delphi窗体
  • SOLID 原则,程序设计五大原则,设计模式
  • Java基础——数组(一维数组与二维数组)
  • Python爬虫抓取微博数据及热度预测
  • Qt QTableWidget表格的宽度
  • OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测)
  • 常见排序算法之插入排序类
  • Dubbo服务消费端远程调用过程剖析
  • 华硕荣获“EPEAT Climate+ Champion”永续先驱称号
  • 基于QT使用OpenGL,加载obj模型,进行鼠标交互
  • 三大赛题指南发布!2023 冬季波卡黑客松本周末开启 Workshop
  • 数据结构与算法(Java版) | 算法的空间复杂度简介
  • 大数据-之LibrA数据库系统告警处理(ALM-12037 NTP服务器异常)
  • 烟草5G智慧工厂数字孪生可视化平台,赋能烟草工业数字化智慧转型
  • PHP编写采集药品官方数据的程序
  • 解决Jenkins执行git脚本时报错:No such device or address问题
  • LCD英文字模库(16x8)模拟测试程序
  • 二分法
  • Linux文件类型与权限及其修改
  • RPC 框架 openfeign 介绍和学习使用总结
  • 大厂真题:【DP/贪心】字节跳动2023秋招-小红的 01 串
  • 【技术类-01】doc转PDF程序卡死的解决方案,
  • 探索未来,开启无限可能:打造智慧应用,亚马逊云科技大语言模型助您一臂之力
  • HTML点击链接强制触发下载