当前位置: 首页 > news >正文

【算法练习Day42】买卖股票的最佳时机 III买卖股票的最佳时机 IV

在这里插入图片描述

​📝个人主页:@Sherry的成长之路
🏠学习社区:Sherry的成长之路(个人社区)
📖专栏链接:练题
🎯长路漫漫浩浩,万事皆有期待

文章目录

  • 买卖股票的最佳时机 III
  • 买卖股票的最佳时机 IV
  • 总结:

今天这期依旧是买卖股票的专题,两道题难度都是困难,建议先看上一期的文章,搞懂买卖股票的最佳时机I和II再来看本章,可能会更加容易理解题解。

买卖股票的最佳时机 III

123. 买卖股票的最佳时机 III - 力扣(LeetCode)

买卖股票的最佳时机III实际上是I和II的拼凑版本。只能买卖最多两次的含义是,可以买卖一次或者两次,并不是说一定要买卖两次,我们最后取得的答案是买卖一次和买卖两次的最大利润,但其实最终利润如果是买卖一次大,那么买卖第二次时候利润最终会与第一次是相等的数值,这个放在后面说。

dp数组的含义,以及遍历顺序与之前的那期两道题是一样的,只是dp数组的含义得到了扩展,0代表第一次买1代表第一次卖,2代表第二次买,3代表第二次卖,仅此而已。

递推公式:递推公式一共有四个,代表了买卖的第一次和第二次。为什么说它是上一期两道题的结合版本,是因为买卖的第一次我们用到的是I的递推公式,而买卖第二次就是用的II的递推公式!买卖同样的是代表了状态,而不是当天一定买如股票卖出股票,它也可以是以前买入的。简单的再说一次,第一次买股票的递推公式是前一天的拥有的钱和在今天如果买了股票拥有的钱做对比,哪个大取哪个,第一次卖是前一天卖出后的拥有的钱,和如果前一天已经持有股票的话,今天卖了会拥有的利润,取最大值。第二次买卖也是一样不多说了。直接给出四个递推公式。

dp[i][0]=max(dp[i-1][0],-prices[i]);dp[i][1]=max(dp[i-1][1],dp[i-1][0]+prices[i]);

dp[i][2]=max(dp[i-1][2],dp[i-1][1]-prices[i]);dp[i][3]=max(dp[i-1][3],dp[i-1][2]+prices[i]);

dp数组的初始化:直接看初始化我们可以知道,第一次买卖再第一天我们都已经分析过了买应该是-prices【i】,因为我们是假设的刚开始手上没有钱初始值是0,不懂得看上一期的文章,卖获得的是0,同一天买卖不赚钱。那第二次买卖我们该如何初始化?我们不妨假设给的数组只有一个数据,也就是只能在第一天买卖,要是这样的想的话,我们第一次卖了之后手里钱和第一次买股票时候钱是一样的,都是0,那么第二次买股票也初始化为-prices【i】,第二次卖也是0。

class Solution {
public:int maxProfit(vector<int>& prices) {vector<vector<int>>dp(prices.size(),vector<int>(4));dp[0][0]=-prices[0];dp[0][1]=0;dp[0][2]=-prices[0];dp[0][3]=0;for(int i=1;i<prices.size();i++){dp[i][0]=max(dp[i-1][0],-prices[i]);dp[i][1]=max(dp[i-1][1],dp[i-1][0]+prices[i]);dp[i][2]=max(dp[i-1][2],dp[i-1][1]-prices[i]);dp[i][3]=max(dp[i-1][3],dp[i-1][2]+prices[i]);}return dp[prices.size()-1][3];}
};

这就是这道题的代码了,思路还是比较清晰的,代码也不是十分复杂,但是要想到怎么解,没有做过还是很难的。最后我们来说前面提到的,为什么如果第一次买卖的利润大于第二次买卖,那么第二次买卖到最后也会变成第一次买卖的利润数呢?其实这一点也很好解释,和上一起的第二道题是一样的,我们的从第一个递推公式往后的每一个递推公式都和上一个递推公式有牵连,也就是说这些地推公式里的值,不仅依赖于自己本身的值,也依赖于上一个递推公式所推算出来的最大利润值。所以也就是说各个递推公式一层影响着下一层,最后到了最后一个递推公式,它所推出来的最大利润就一定是两次中的最大利润。

买卖股票的最佳时机 IV

188. 买卖股票的最佳时机 IV - 力扣(LeetCode)

这道题算上是上一道题的进阶版本,最多可以交易几次,是由函数传值影响,并不是直接固定的数值,那么我们还能像上一道题一样手动列出有递推公式吗?其实我们可以借助于循环,帮助我们列出对应数量的递推公式,一共可以买卖k次,那么一定得列出2*k个递推公式,因为买卖是两个公式。这道题与上一道不同的是,这道题我们需要列一个什么都不做的操作,来使递推公式能够模拟第一次买入的时候也可以像其他时候买入那样具有泛型的规律。这样说起来可能太抽象了,在后面读者可以自行感悟。

dp数组含义:二维部分是需要2*k+1个这么大的空间。且含义与之前相同。

递推公式:由于我们是借助循环来模拟列出各个递推公式,而每一次买卖需要两个递推公式,那么很显然我们只需列出两个递推公式让它们循环k次就可以了。

两个递推公式分别是:

dp[i][j+1]=max(dp[i-1][j+1],dp[i-1][j]-prices[i]);
dp[i][j+2]=max(dp[i-1][j+2],dp[i-1][j+1]+prices[i]);

对上面两个递推公式做一个简单的解释,为什么是j+1,和j+2,而j又是什么呢?j其实是用来模拟第几次买卖的变量,j从0开始走,我们已经说过了,前面空出来一位不做操作,所以j+1模拟第一次买入,j+2模拟第一次卖出,这样就使得第一次买股票也有规律可循,dp【i】【0】实际上就是为了占位的,它被初始化为0。方便了第一次的买入。j每次向后走两位。

初始化:初始化和上面的一样,也是买入初始化为-prices【i】,卖出初始化为0。只不过我们这里在创建数组时候,将各个位置初始为0之后,应该再用for循环把买入股票再初始化一次。关于这里为什么总要把买股票初始化为-prices【i】,不懂得也可以去看上一期文章,买股票最开始假设的是起初拥有现金0元,如果不初始化一下的话,就会导致一直为0,不买入股票。

class Solution {
public:int maxProfit(int k, vector<int>& prices) {vector<vector<int>>dp(prices.size(),vector<int>(2*k+1,0));for(int j=1;j<2*k;j+=2)dp[0][j]=-prices[0];for(int i=1;i<prices.size();i++){for(int j=0;j<2*k;j+=2){dp[i][j+1]=max(dp[i-1][j+1],dp[i-1][j]-prices[i]);dp[i][j+2]=max(dp[i-1][j+2],dp[i-1][j+1]+prices[i]);}}return dp[prices.size()-1][2*k];}
};

以上就是本文章的全部内容,两道题都是困难难度的题,但是明白的思路会发现其实并没有那么难。

总结:

今天我们完成了买卖股票的最佳时机 III、买卖股票的最佳时机 IV两道题,相关的思想需要多复习回顾。接下来,我们继续进行算法练习。希望我的文章和讲解能对大家的学习提供一些帮助。

当然,本文仍有许多不足之处,欢迎各位小伙伴们随时私信交流、批评指正!我们下期见~

在这里插入图片描述

http://www.lryc.cn/news/223259.html

相关文章:

  • 苹果手机如何备份通讯录?看完这篇就懂了!
  • [yarn]yarn异常
  • C++ NULL 与nullptr 区别
  • Google Chrome 浏览器 119.0.6045.106 版本提示 STATUS_INVALID_IMAGE_HASH 崩溃
  • 网络IO
  • 数据库管理-第115期 too many open files(202301107)
  • 一行命令让你的服务器命令行亮起来!!!!
  • 线性代数(二)| 行列式性质 求值 特殊行列式 加边法 归纳法等多种方法
  • OpenCV入门7:图像形态学变换
  • Apache Storm 2.5.0 集群安装与配置
  • Android-将编码的base64图像,添加水印,转换成File存储到手机
  • AI 绘画 | Stable Diffusion 图生图
  • Nat. Med. | 基于遗传学原发部位未知癌症的分类和治疗反应预测
  • RocketMQ如何安全的批量发送消息❓
  • 计算机视觉与深度学习 | 基于视觉惯性紧耦合的SLAM后端优化算法
  • GDI+ 绘制透明图
  • 【Java】IntelliJ IDEA使用JDBC连接MySQL数据库并写入数据
  • Linux Hadoop平台伪分布式安装
  • 【STM32-DSP库的使用】基于Keil5 + STM32CubeMX 手动添加、库添加方式
  • createElement的用法
  • Mabitys总结
  • JAVA安全之Log4j-Jndi注入原理以及利用方式
  • Spring源码系列-框架中的设计模式
  • 数据的读取和保存-MATLAB
  • C++ 输入、输出和整数运算
  • Element Plus 解决组件显示英文问题
  • sqlite3.NotSupportedError: deterministic=True requires SQLite 3.8.3 or higher
  • 单线程介绍、ECMAScript介绍、操作系统Windows、Linux 和 macOS
  • 【Docker】iptables基本原理
  • 微服务架构——笔记(3)Eureka