当前位置: 首页 > news >正文

LeetCode----149. 直线上最多的点数

 题目

给你一个数组 points ,其中 points[i] = [ x i x_i xi, y i y_i yi] 表示 X-Y 平面上的一个点。求最多有多少个点在同一条直线上。

示例 1:
在这里插入图片描述

输入:points = [[1,1],[2,2],[3,3]]
输出:3

示例 2:
在这里插入图片描述

输入:points = [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
输出:4

提示:
1 <= points.length <= 300
points[i].length == 2
-104 <= xi, yi <= 1 0 4 10^4 104
points 中的所有点 互不相同

 解

解决这个问题的常用方法是使用哈希表。对于给定的点 ( x i x_i xi, y i y_i yi),我们可以计算其与其他点的斜率 ( x j x_j xj - x i x_i xi) / ( y j y_j yj - y i y_i yi),并将这个斜率存储在哈希表中。

具体步骤如下:

  1. 遍历每一个点 ( x i x_i xi, y i y_i yi),对于每个点,初始化一个哈希表 slopeMap,用于存储以该点为起点的直线上的点数。
  2. 然后再次遍历每一个点 ( x j x_j xj, y j y_j yj)(这个循环将计算所有点与点 ( x i x_i xi, y i y_i yi) 的斜率),如果 ( x j x_j xj, y j y_j yj) 与 ( x i x_i xi, y i y_i yi) 重合,将 overlap 值加 1,否则计算斜率 ( x j x_j xj - x i x_i xi) / ( y j y_j yj - y i y_i yi)。
  3. 将计算得到的斜率存储在 slopeMap 中,如果已存在该斜率,直线上的点数加 1,如果不存在,则初始化为 2(包括 ( x i x_i xi, y i y_i yi) 和 ( x j x_j xj, y j y_j yj))。
  4. 在每次内循环结束后,更新 maxPoints,确保始终保持记录最多点的直线上的点数。
  5. 继续遍历下一个点 ( x i x_i xi, y i y_i yi),并重复上述过程,直到所有点都被处理。

以下是Java代码示例:

class Solution {public int maxPoints(int[][] points) {if (points.length < 3) {return points.length;}int maxPoints = 2; // 初始化最大点数为2,因为至少有两个点在同一直线上for (int i = 0; i < points.length; i++) {int overlap = 0; // 用于记录与当前点重合的点数HashMap<Double, Integer> slopeMap = new HashMap<>(); // 用于存储斜率与点数的映射for (int j = 0; j < points.length; j++) {if (i == j) {overlap++; // 与自身重合的点数加1} else {double slope;if (points[i][0] == points[j][0]) {slope = Double.POSITIVE_INFINITY; // 当x坐标相同时,斜率设为正无穷大} else {slope = (double)(points[i][1] - points[j][1]) / (points[i][0] - points[j][0]); // 计算斜率}slopeMap.put(slope, slopeMap.getOrDefault(slope, 0) + 1); // 存储斜率并更新点数}}int localMax = overlap; // 初始化局部最大点数为与自身重合的点数for (int count : slopeMap.values()) {localMax = Math.max(localMax, count + overlap); // 更新局部最大点数}maxPoints = Math.max(maxPoints, localMax); // 更新全局最大点数}return maxPoints;}
}

这段代码通过哈希表来统计每个点的斜率,然后记录直线上的点数,最终找到直线上点数最多的情况。

 解2

除了上述的哈希表解法外,还有一种更优化的解法,可以在O(n^2)的时间内解决问题,其中n是点的数量。

这个解法基于以下观察:如果有三个点共线,那么它们的斜率是相同的。因此,我们可以遍历每一对点,计算它们之间的斜率,并存储在哈希表中。对于每个点,我们统计共线的点的数量,并保持更新最大值。

以下是基于这种观察的Java代码:

class Solution {public int maxPoints(int[][] points) {if (points.length < 3) {return points.length;}int maxPoints = 2; // 初始化最大点数为2,因为至少有两个点在同一直线上for (int i = 0; i < points.length; i++) {int overlap = 0; // 用于记录与当前点重合的点数HashMap<String, Integer> slopeMap = new HashMap<>(); // 用于存储斜率与点数的映射for (int j = 0; j < points.length; j++) {if (i == j) {overlap++; // 与自身重合的点数加1} else {int deltaX = points[i][0] - points[j][0];int deltaY = points[i][1] - points[j][1];if (deltaX == 0) {slopeMap.put("inf", slopeMap.getOrDefault("inf", 0) + 1); // 斜率为正无穷} else {int gcd = gcd(deltaX, deltaY);String slope = (deltaY / gcd) + "/" + (deltaX / gcd); // 用字符串表示斜率slopeMap.put(slope, slopeMap.getOrDefault(slope, 0) + 1);}}}int localMax = overlap; // 初始化局部最大点数为与自身重合的点数for (int count : slopeMap.values()) {localMax = Math.max(localMax, count + overlap); // 更新局部最大点数}maxPoints = Math.max(maxPoints, localMax); // 更新全局最大点数}return maxPoints;}// 辗转相除法计算最大公约数private int gcd(int a, int b) {return b == 0 ? a : gcd(b, a % b);}
}

这种解法避免了使用浮点数斜率,使用最大公约数来保持斜率的精度,同时也处理了斜率为正无穷的情况。这个解法的时间复杂度为O(n^2),但在实际应用中通常更高效。

 解3

动态规划的思路是,对于每个点 (xi, yi),可以考虑以它为终点的直线上的点数,然后记录最大值。下面是一个使用动态规划的Java代码示例:

class Solution {public int maxPoints(int[][] points) {if (points.length < 3) {return points.length;}int maxPoints = 2; // 初始化最大点数为2,因为至少有两个点在同一直线上int n = points.length;for (int i = 0; i < n; i++) {int overlap = 0; // 用于记录与当前点重合的点数int localMax = 0; // 用于记录以当前点为终点的直线上的点数HashMap<String, Integer> slopeMap = new HashMap<>(); // 用于存储斜率与点数的映射for (int j = i + 1; j < n; j++) {int deltaX = points[i][0] - points[j][0];int deltaY = points[i][1] - points[j][1];if (deltaX == 0 && deltaY == 0) {overlap++; // 与自身重合的点数加1} else {int gcd = gcd(deltaX, deltaY);String slope = (deltaY / gcd) + "/" + (deltaX / gcd); // 用字符串表示斜率slopeMap.put(slope, slopeMap.getOrDefault(slope, 0) + 1); // 存储斜率并更新点数localMax = Math.max(localMax, slopeMap.get(slope)); // 更新以当前点为终点的直线上的点数}}maxPoints = Math.max(maxPoints, localMax + overlap + 1); // 更新全局最大点数,加1是因为还包括自身点}return maxPoints;}// 辗转相除法计算最大公约数private int gcd(int a, int b) {return b == 0 ? a : gcd(b, a % b);}
}
http://www.lryc.cn/news/222898.html

相关文章:

  • 19、Flink 的Table API 和 SQL 中的自定义函数及示例(3)
  • Flutter IOS 前后台切换主题自动变化的问题
  • rabbitmq入门学习
  • 说说对Fiber架构的理解?解决了什么问题?
  • Spring Security笔记
  • 快速教程|如何在 AWS EC2上使用 Walrus 部署 GitLab
  • [vmware]vmware虚拟机压缩空间清理空间
  • 一篇文章带你使用(MMKV--基于 mmap 的高性能通用 key-value 组件)
  • Pytorch 里面torch.no_grad 和model.eval(), model.train() 的作用
  • Ozon产品内容评级功能上线,妙手ERP实力助力Ozon卖家全方位打造爆款产品!
  • Linux 下最主流的文件系统格式——ext
  • 变量环境、变量提升和暂时性死区
  • yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)
  • 【神经网络】【GoogleNet】
  • 网络安全深入学习第八课——正向代理(工具:ReGeorg)
  • Jmeter全流程性能测试实战
  • Python算法例8 将整数A转换为B
  • 一个基于百度飞桨封装的.NET版本OCR工具类库 - PaddleOCRSharp
  • 在 CelebA 数据集上训练的 PyTorch 中的基本变分自动编码器
  • 利用Ansible实现批量Linux服务器安全配置
  • 读书笔记:彼得·德鲁克《认识管理》第8章 战略规划:企业家技能
  • HarmonyOS应用开发-视频播放器与弹窗
  • java中对象的引用是什么?
  • jenkins插件迁移
  • RK356X Android13.0 HDMI和喇叭同时出声音
  • vue sass-loader,webpack安装卸载操作命令
  • nacos应用——占用内存过多问题解决(JVM调优初步)
  • 大漠插件(二、Qt使用插件时注意事项)
  • CSS 浮动
  • 基于STM32+华为云IOT设计的火灾感知系统