当前位置: 首页 > news >正文

[蓝桥杯 2022 省 A] 推导部分和

[蓝桥杯 2022 省 A] 推导部分和

题目描述

对于一个长度为 N N N 的整数数列 A 1 , A 2 , ⋯ A N A_{1}, A_{2}, \cdots A_{N} A1,A2,AN,小蓝想知道下标 l l l r r r 的部分和 ∑ i = l r A i = A l + A l + 1 + ⋯ + A r \sum\limits_{i=l}^{r}A_i=A_{l}+A_{l+1}+\cdots+A_{r} i=lrAi=Al+Al+1++Ar 是多少?

然而,小蓝并不知道数列中每个数的值是多少,他只知道它的 M M M 个部分和的值。其中第 i i i 个部分和是下标 l i l_{i} li r i r_{i} ri 的部分和 ∑ j = l i r i = A l i + A l i + 1 + ⋯ + A r i \sum_{j=l_{i}}^{r_{i}}=A_{l_{i}}+A_{l_{i}+1}+\cdots+A_{r_{i}} j=liri=Ali+Ali+1++Ari, 值是 S i S_{i} Si

输入格式

第一行包含 3 个整数 N 、 M N 、 M NM Q Q Q。分别代表数组长度、已知的部分和数量 和询问的部分和数量。

接下来 M M M 行,每行包含 3 3 3 个整数 l i , r i , S i l_{i}, r_{i}, S_{i} li,ri,Si

接下来 Q Q Q 行,每行包含 2 2 2 个整数 l l l r r r,代表一个小蓝想知道的部分和。

输出格式

对于每个询问, 输出一行包含一个整数表示答案。如果答案无法确定, 输出 UNKNOWN

样例 #1

样例输入 #1

5 3 3
1 5 15
4 5 9
2 3 5
1 5
1 3
1 2

样例输出 #1

15
6
UNKNOWN

提示

对于 10 % 10 \% 10% 的评测用例, 1 ≤ N , M , Q ≤ 10 , − 100 ≤ S i ≤ 100 1 \leq N, M, Q \leq 10,-100 \leq S_{i} \leq 100 1N,M,Q10,100Si100

对于 20 % 20 \% 20% 的评测用例, 1 ≤ N , M , Q ≤ 20 , − 1000 ≤ S i ≤ 1000 1 \leq N, M, Q \leq 20,-1000 \leq S_{i} \leq 1000 1N,M,Q20,1000Si1000

对于 30 % 30 \% 30% 的评测用例, 1 ≤ N , M , Q ≤ 50 , − 10000 ≤ S i ≤ 10000 1 \leq N, M, Q \leq 50,-10000 \leq S_{i} \leq 10000 1N,M,Q50,10000Si10000

对于 40 % 40 \% 40% 的评测用例, 1 ≤ N , M , Q ≤ 1000 , − 1 0 6 ≤ S i ≤ 1 0 6 1 \leq N, M, Q \leq 1000,-10^{6} \leq S_{i} \leq 10^{6} 1N,M,Q1000,106Si106

对于 60 % 60 \% 60% 的评测用例, 1 ≤ N , M , Q ≤ 10000 , − 1 0 9 ≤ S i ≤ 1 0 9 1 \leq N, M, Q \leq 10000,-10^{9} \leq S_{i} \leq 10^{9} 1N,M,Q10000,109Si109

对于所有评测用例, 1 ≤ N , M , Q ≤ 1 0 5 , − 1 0 12 ≤ S i ≤ 1 0 12 , 1 ≤ l i ≤ r i ≤ N 1 \leq N, M, Q \leq 10^{5},-10^{12} \leq S_{i} \leq 10^{12}, 1 \leq l_{i} \leq r_{i} \leq N 1N,M,Q105,1012Si1012,1liriN, 1 ≤ l ≤ r ≤ N 1 \leq l \leq r \leq N 1lrN 。数据保证没有矛盾。

蓝桥杯 2022 省赛 A 组 J 题。


分析:

居然是一道图论建模题。。
对于一个部分和的关系,利用前缀和的思想,我们可以理解为是:
s [ r ] − s [ l − 1 ] = v s[r]-s[l-1]=v s[r]s[l1]=v
其实类比差分约束的思想就是让 l − 1 l-1 l1 r r r之间连一条长度为v的边
( l − 1 , r , v ) , ( r , l − 1 , − v ) (l-1,r,v),(r,l-1,-v) (l1,r,v),(r,l1,v)
建完边之后各个部分和之间的关系也就一目了然了
接下来我们只需要利用 D F S DFS DFS或者 B F S BFS BFS遍历这张图,用并查集将具有相同标准的前缀和放在一个块里(一个快里面的任何数都可以作为标准),在一个块里的任何两个数我们都能知道他们之间的部分和


Code

#include<bits/stdc++.h>
using namespace std;#define int long longconst int N = 2e5+100;
int n,m,q;
int Hom[N],cnt = 0;
bool vi[N];
struct Node{int y,Next,v;
}e[2*N];
int Linkk[N] , len;
int s[N];
int fa[N];void Insert(int x,int y,int v){e[++len] = (Node){y,Linkk[x],v};Linkk[x] = len;
}int Getfa(int x){return fa[x] == x?x:fa[x] = Getfa(fa[x]);
}void Dfs(int x,int vv){vi[x] = 1;s[x] = vv;for (int i = Linkk[x]; i; i = e[i].Next){int y = e[i].y;if (vi[y]) continue;fa[Getfa(y)] = Getfa(x);Dfs(y,vv+e[i].v);}
}signed main(){scanf("%lld %lld %lld",&n,&m,&q);for (int i = 1,x,y,v; i <= m; i++)cin>>x>>y>>v,Insert(x-1,y,v),Insert(y,x-1,-v);for (int i = 0; i <= n; i++) fa[i] = i;for (int i = 0; i <= n; i++)if (!vi[i]) Dfs(i,0);for (int i = 1; i <= q; i++){int l,r;cin>>l>>r;if (Getfa(l-1)!=Getfa(r)) {cout<<"UNKNOWN"<<endl;continue;}printf("%lld\n",s[r]-s[l-1]);}return 0;
}
http://www.lryc.cn/news/221989.html

相关文章:

  • pytorch复现_UNet
  • 定岗定编设计:企业职能部门定岗定编设计项目成功案例
  • 鸿蒙原生应用开发-DevEco Studio本地模拟器的使用
  • QT blockingFilter blockingMap blockingMapped
  • 【ARFoundation学习笔记】平面检测
  • Python---ljust()--左对齐、rjust()--右对齐、center()--居中对齐
  • spdk用户态块层详解
  • 双通道 H 桥电机驱动芯片AT8833,软硬件兼容替代DRV8833,应用玩具、打印机等应用
  • WPF布局与控件分类
  • 复杂逻辑的开发利器—Mendix快速实现AQL质量抽检
  • RFID系统
  • Markov Chain Fingerprinting to Classify Encrypted Traffic 论文笔记
  • vue 跨标签页的数据共享(即跨标签页通信)
  • 什么是拉宾-斯科特定理?
  • Java并发编程第11讲——AQS设计思想及核心源码分析
  • 什么是数据库?数据库有哪些基本分类和主要特点?
  • flutter显示出底部控件的引导页
  • 常用设计模式——模板方法模式
  • idea使用git删除本地提交(未推送)
  • centos 7部署Mysql8.0主从
  • asp.net docker-compose添加es search
  • 工业路由器网关的网络协议之NAT技术
  • 【亲测可用】SpringBoot使用Redis的Lettuce连接池报RedisCommandTimeoutException
  • When Urban Region Profiling Meets Large Language Models
  • 【python】最大的偶数
  • QT 实现两款自定义的温度计/湿度控件
  • Fourier分析导论——第4章——Fourier级数的一些应用(E.M. Stein R. Shakarchi)
  • c语言使用fdk_aac库对aac音频解码为pcm
  • zustand管理工具--React
  • Elasticsearch内存分析