当前位置: 首页 > news >正文

数据标注工具【LabelImg】安装使用 用VOC制作自己的数据集

labelImg的安装

  • ⭐️LabelImg简介
  • ⭐️LabelImg的安装
  • ⭐️labelImg标注数据集
  • ⭐️利用VOC制作自己的数据集

⭐️LabelImg简介

Labelimg是一款开源的数据标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用,它可以标注三种格式。

   1 VOC标签格式,保存为xml文件。2  yolo标签格式,保存为txt文件。3 createML标签格式,保存为json格式。

⭐️LabelImg的安装

首先,用conda创建一个新的环境
conda create -n py38 python=3.8
查看已有环境列表:
conda envs list

然后,激活环境py38
conda activate py38

然后在py38这个环境中下载labelImg即可
pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
然后在py38环境下输入 labelImg即可打开labelImg

打开如图界面:

labelImg的使用

比较常用的快捷键:
画框 W
下一张

⭐️labelImg标注数据集

Open Dir我选择水果数据集进行标注

该数据集一共有五个标签。
为方便标注,选取了一部分各类别的水果至一个文件夹JPEGImages中进行标注。
点击Change save Dir我将标注的数据集存放在路径
标注好的数据集如下,为xml格式:

⭐️利用VOC制作自己的数据集

新建文件夹,并在新建的文件夹下新建AnnotationsImageSetsJPEImages三个文件夹,在ImageSets下新建Main文件夹。

将自己的数据集图片拷贝到JPEGImages目录下。
即:

将数据集label文件拷贝到Annotations目录下。
即:

在主文件夹下新建test.py文件夹,输入以下代码进去运行,将生成四个文件:train.txt,val.txt,test.txt和trainval.txt。

import os
import randomtrainval_percent = 0.8  #val即Validation(验证),即训练集和验证机占全体数据的比例
train_percent = 0.9  #训练集占训练集和验证集总体的比例
xmlfilepath = 'D:\\A_data\\fruits\VOC\\Annotations' #这里是我的绝对路径
txtsavepath = 'D:\\A_data\\fruits\\VOC\\ImageSets\Main' #我的绝对路径 如果使用需要修改
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)  # 训练集和验证集总个数
tr = int(tv * train_percent)  # 训练集总个数
trainval = random.sample(list, tv)  
train = random.sample(trainval, tr)#需要生成以下四个文件,分别是test.txt,train.txt,trainval.txt,val.txt
#分别代表测试集、训练集、训练-验证集、验证集
ftrainval = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\trainval.txt', 'w')
ftest = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\test.txt', 'w')
ftrain = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\train.txt', 'w')
fval = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftest.write(name)else:fval.write(name)else:ftrain.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

运行结束后,我们可以查看txt文件,我们的数据集已经制作完成。
test数据集:

103
105
109
11
111
115
117
119
125
129
131
135
137
139
143
149
15
151
153
157
161
163
165
167
169
23
25
29
3
31
33
35
37
39
43
45
47
49
5
51
53
55
57
61
63
67
7
71
73
75
77
79
81
85
87
89
9
93
95
97
99

train数据集:

101
107
113
121
123
133
141
147
155
159
17
19
21
41
59
65
83
91

训练验证集

1
103
105
109
11
111
115
117
119
125
127
129
13
131
135
137
139
143
145
149
15
151
153
157
161
163
165
167
169
171
23
25
27
29
3
31
33
35
37
39
43
45
47
49
5
51
53
55
57
61
63
67
69
7
71
73
75
77
79
81
85
87
89
9
93
95
97
99

验证集:

1
127
13
145
171
27
69
http://www.lryc.cn/news/221316.html

相关文章:

  • Zeus IoT : 基于 SpringBoot 的分布式开源物联网大数据平台
  • 面试—如何介绍项目中的多级缓存?
  • PyTorch入门学习(十七):完整的模型训练套路
  • 《 Hello 算法 》 - 免费开源的数据结构与算法入门教程电子书,包含大量动画、图解,通俗易懂
  • 数据库之事务
  • NOIP2023模拟12联测33 B. 游戏
  • 代码随想录打卡第六十三天|84.柱状图中最大的矩形
  • python tempfile 模块使用
  • 【软件测试】接口测试实战详解
  • 轻量封装WebGPU渲染系统示例<20>- 美化一下元胞自动机之生命游戏(源码)
  • Nodejs的安装以及配置(node-v12.16.1-x64.msi)
  • 03【保姆级】-GO语言变量和数据类型和相互转换
  • mermaid学习第一天/更改主题颜色和边框颜色/《需求解释流程图》
  • SAP MASS增加PR字段-删除标识
  • 【手把手教你】训练YOLOv8分割模型
  • 物料主数据增强屏幕绘制器DUMP
  • vue 实现在线预览Excel-LuckyExcel/LuckySheet实现方案
  • AIGPT重大升级,界面重新设计,功能更加饱满,用户体验升级
  • Web逆向-mtgsig1.2简单分析
  • 【蓝桥杯省赛真题41】Scratch电脑开关机 蓝桥杯少儿编程scratch图形化编程 蓝桥杯省赛真题讲解
  • 第10章 Java常用类
  • Android 11 getPackageManager().getPackageInfo 返回null
  • 4、数据结构
  • qt5.15.2+vs2019源码调试开发环境搭建
  • 【数据结构】单链表之--无头单向非循环链表
  • 网络中使用最多的图片格式有哪些
  • 个人常用Linux命令
  • 数据结构——常见简答题汇总
  • josef约瑟低电压继电器 DY-110 10-109V 辅助电源·DC110V 嵌入式面板安装
  • Visual Studio Code将中文写入变量时,中文老是乱码问题