容斥恒等式的证明
容斥恒等式的证明
推广公式
P(A∪B)=P(A)+P(B)−P(A∩B)P(A\cup B)=P(A)+P(B)-P(A\cap B) P(A∪B)=P(A)+P(B)−P(A∩B)
(a)设A、B、C为三个事件,则下列恒等式成立:
P(A∪B∪C)=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) P(A∪B∪C)=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)
(b)设A1A_1A1,A2A_2A2,A3A_3A3,…,AnA_nAn为n个事件,令S1S_1S1={i∣1≤i≤ni|1\leq i \leq ni∣1≤i≤n},S2S_2S2={(i1,i2)∣1≤i1<i2≤n(i_1,i_2)|1\leq i_1 < i_2 \leq n(i1,i2)∣1≤i1<i2≤n},一般的,令S1S_1S1为满足条件$ \le i_1 < i_2<… < i_m\le n的m维指标,(的m维指标,(的m维指标,(i_1,…i_m$)的集合,则下列恒等式成立:
P(∪k=1nAk)=∑i∈S1P(Ai)−∑(i1,i2)∈S2P(Ai1∩Ai2)+∑i1,i2,i3∈S3P(Ai1∩Ai2∩Ai3)−...+(−1)n−1P(∩k=1nAk)P(\cup^n_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-1}P(\cap^n_{k=1}A_{k})P(∪k=1nAk)=i∈S1∑P(Ai)−(i1,i2)∈S2∑P(Ai1∩Ai2)+i1,i2,i3∈S3∑P(Ai1∩Ai2∩Ai3)−...+(−1)n−1P(∩k=1nAk)
解:(a)利用公式P(X∪Y)=P(X)+P(Y)−P(X∩Y)P(X\cup Y)=P(X)+P(Y)-P(X\cap Y)P(X∪Y)=P(X)+P(Y)−P(X∩Y)和(A∪B)∩C=(A∩C)∪(B∩C)(A\cup B)\cap C=(A\cap C)\cup (B\cap C)(A∪B)∩C=(A∩C)∪(B∩C),我们有
P(A∪B∪C)=P(A∪B)+P(C)−P((A∪B)∩C)=P(A∪B)+P(C)−P((A∩C)∪(B∩C))=P(A∪B)+P(C)−P(A∩C)−P(B∩C)+P(A∩B∩C)=P(A)+P(B)−P(A∩B)+P(C)−P(A∩C)−P(B∩C)+P(A∩B∩C)=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)P(A\cup B\cup C)=P(A\cup B)+P(C)-P((A\cup B )\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A\cup B)+P(C)-P((A\cap C )\cup (B\cap C))\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A\cup B)+P(C)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A)+P(B)-P(A\cap B)+P(C)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C)P(A∪B∪C)=P(A∪B)+P(C)−P((A∪B)∩C) =P(A∪B)+P(C)−P((A∩C)∪(B∩C)) =P(A∪B)+P(C)−P(A∩C)−P(B∩C)+P(A∩B∩C) =P(A)+P(B)−P(A∩B)+P(C)−P(A∩C)−P(B∩C)+P(A∩B∩C) =P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)
(b)利用归纳法,主要推断部分可以模仿(a)中步骤
n=2时,P(A∪B)=P(A)+P(B)−P(A∩B)P(A\cup B)=P(A)+P(B)-P(A\cap B)P(A∪B)=P(A)+P(B)−P(A∩B).
假设n=k-1,有
P(∪k=1k−1Ak)=∑i∈S1P(Ai)−∑(i1,i2)∈S2P(Ai1∩Ai2)+∑i1,i2,i3∈S3P(Ai1∩Ai2∩Ai3)−...+(−1)n−2P(∩k=1k−1Aik)P(\cup^{k-1}_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-2}P(\cap^{k-1}_{k=1}A_{i_k})P(∪k=1k−1Ak)=i∈S1∑P(Ai)−(i1,i2)∈S2∑P(Ai1∩Ai2)+i1,i2,i3∈S3∑P(Ai1∩Ai2∩Ai3)−...+(−1)n−2P(∩k=1k−1Aik)
则n=k时,P(∪k=1nAk)=P(∪k=1k−1Ak∪Ak)P(\cup^n_{k=1}A_k)=P(\cup^{k-1}_{k=1}A_k\cup A_k)P(∪k=1nAk)=P(∪k=1k−1Ak∪Ak)
令∪i=1k−1Ai=B\cup^{k-1}_{i=1}A_i=B∪i=1k−1Ai=B,
P(∪k=1nAk)=P(B∪Ak)P(\cup^n_{k=1}A_k)=P(B\cup A_k)P(∪k=1nAk)=P(B∪Ak)
所以,
P(∪k=1nAk)=P(B∪Ak)=P(B)+P(Ak)−P(B∩Ak)P(\cup^n_{k=1}A_k)=P(B\cup A_k)=P(B)+P(A_k)-P(B\cap A_k)P(∪k=1nAk)=P(B∪Ak)=P(B)+P(Ak)−P(B∩Ak) (1)
前两个地方都很好推导,主要是最后一项。
P(B∩Ak)=P(∪i=1k−1AiAk)=∑i=1k−1P(AiAk)+(−11)∑1≤i1<i2≤ik−1P(Ai1Ai2Ak)+...+(−1)k−2P(A1A2...Ak)P(B\cap A_k)=P(\cup^{k-1}_{i=1}A_iA_k)\\=\displaystyle \sum_{i=1}^{k-1}P(A_iA_k)+(-1^1) \displaystyle \sum_{1\le i_1<i_2\le i_{k-1}}P(A_{i_1}A_{i_2}A_k)+...+(-1)^{k-2}P(A_1A_2...A_k)P(B∩Ak)=P(∪i=1k−1AiAk)=i=1∑k−1P(AiAk)+(−11)1≤i1<i2≤ik−1∑P(Ai1Ai2Ak)+...+(−1)k−2P(A1A2...Ak) (2)
把(2)带入(1),
得到:
P(∪k=1nAk)=∑i∈S1P(Ai)−∑(i1,i2)∈S2P(Ai1∩Ai2)+∑i1,i2,i3∈S3P(Ai1∩Ai2∩Ai3)−...+(−1)n−1P(∩k=1nAk)P(\cup^n_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-1}P(\cap^n_{k=1}A_{k})P(∪k=1nAk)=i∈S1∑P(Ai)−(i1,i2)∈S2∑P(Ai1∩Ai2)+i1,i2,i3∈S3∑P(Ai1∩Ai2∩Ai3)−...+(−1)n−1P(∩k=1nAk)
得证。