当前位置: 首页 > news >正文

NOIP2023模拟10联测31 涂鸦

题目大意

有一面由 n × m n\times m n×m个格子组成的墙,每个格子要么是黑色,要么是白色。你每次将会进行这样的操作:等概率随机选择一个位置 ( x , y ) (x,y) (x,y)和一个颜色 c c c(黑色或白色),( 1 ≤ x ≤ n , 1 ≤ y ≤ m 1\leq x\leq n,1\leq y\leq m 1xn,1ym,选择任意 ( x , y , c ) (x,y,c) (x,y,c)的组合的概率都是 1 2 n m \dfrac{1}{2nm} 2nm1),然后将 ( x , y ) (x,y) (x,y)左上角的所有格子的颜色都涂成 c c c,也就是将所有满足 1 ≤ x ′ ≤ x , 1 ≤ y ′ ≤ y 1\leq x'\leq x,1\leq y'\leq y 1xx,1yy的格子 ( x ′ , y ′ ) (x',y') (x,y)的颜色涂成 c c c。次操作的代价为涂的格子的数量,即 x × y x\times y x×y。给定初始状态和终止状态,问期望要花费多少代价才能将墙面从初始状态涂成终止状态。

1 ≤ n , m ≤ 5 1\leq n,m\leq 5 1n,m5


题解

看到 n n n m m m都比较小,我们考虑用状压 D P DP DP。设 f s f_s fs表示当前墙面的状态为 s s s时要到最终状态的期望代价,可以列出 2 n m 2^{nm} 2nm个方程,用高斯消元解方程即可。

这样做的时间复杂度为 O ( 2 3 n m ) O(2^{3nm}) O(23nm),我们考虑优化。

我们考虑减少状态的数量。我们发现,如果一个位置的右下角的某个位置与最终状态不同,则这个位置一定会被修改,那这个位置当前的值就不重要了。

p i , j p_{i,j} pi,j表示 ( i , j ) (i,j) (i,j)右下角的位置是否已经全部变得和终止状态一样,可以发现 p i , j p_{i,j} pi,j 1 1 1的状态一定在右下角呈阶梯状的。举个例子:

在这里插入图片描述
其中橙色部分为 p i , j = 1 p_{i,j}=1 pi,j=1的格子。

那么,总状态数为 ( n + m n ) \binom{n+m}{n} (nn+m)。我们可以用 d f s dfs dfs求出所有可能的状态。

对于每个状态,我们考虑它能到达哪些状态。我们将每种状态中 p i , j = 1 p_{i,j}=1 pi,j=1的格子设为与终止状态相同, p i , j = 0 p_{i,j}=0 pi,j=0的格子设为与终止状态相反。然后将左上角的一个矩形全部变为黑色或白色,再判断改变颜色后的状态是什么状态。

用上述方法求出转移方程,再用高斯消元求解即可。

时间复杂度为 O ( ( n + m n ) 3 ) O(\binom{n+m}{n}^3) O((nn+m)3) ( n + m n ) \binom{n+m}{n} (nn+m)的最大值为 252 252 252,是可以过的。

code

#include<bits/stdc++.h>
using namespace std;
const long long mod=998244353;
int n,m,S,bg=0,ed=0,sum=0,tot=0,w[10][10];
long long ans=0,a[305][305];
char s[10][10],t[10][10];
array<int,5>v;
map<array<int,5>,int>mp;
void init(){S=(1<<n*m)-1;for(int i=0;i<n;i++){for(int j=0;j<m;j++){for(int x=0;x<=i;x++){for(int y=0;y<=j;y++){w[i][j]|=1<<(x*m+y);}}}}for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){sum+=2*i*j;}}
}
void dfs(int t,int now){if(t==n){mp[v]=++tot;return;}for(int i=now;i<=m;i++){v[t]=i;dfs(t+1,i);}
}
int gtid(int s){array<int,5>b;for(int i=0;i<5;i++) b[i]=0;for(int i=0;i<n;i++){b[i]=m;for(int j=0;j<m;j++){int wt=(s>>(i*m+j))&1;if(wt==(t[i][j]=='W')) b[i]=m-j-1;}}for(int i=n-2;i>=0;i--) b[i]=min(b[i],b[i+1]);return mp[b];
}
long long mi(long long t,long long v){if(!v) return 1;long long re=mi(t,v/2);re=re*re%mod;if(v&1) re=re*t%mod;return re;
}
void gauss(){for(int i=1;i<=tot;i++){for(int j=i;j<=tot;j++){if(a[j][i]){swap(a[j],a[i]);break;}}for(int j=1;j<=tot;j++){if(i==j) continue;long long dv=(mod-1)*a[j][i]%mod*mi(a[i][i],mod-2)%mod;for(int k=1;k<=tot+1;k++) a[j][k]=(a[j][k]+dv*a[i][k])%mod;}}
}
int main()
{
//	freopen("graffiti.in","r",stdin);
//	freopen("graffiti.out","w",stdout);scanf("%d%d",&n,&m);init();for(int i=0;i<n;i++) scanf("%s",s[i]);for(int i=0;i<n;i++) scanf("%s",t[i]);for(int i=0;i<n;i++){for(int j=0;j<m;j++){bg|=(s[i][j]=='B')<<(i*m+j);ed|=(t[i][j]=='B')<<(i*m+j);}}dfs(0,0);for(auto p:mp){int s=0,id=p.second;for(int i=0;i<n;i++){for(int j=0;j<m;j++){if(j<m-p.first[i])s|=(t[i][j]=='W')<<(i*m+j);elses|=(t[i][j]=='B')<<(i*m+j);}}a[id][id]=2*n*m;if(s==ed) continue;a[id][tot+1]=sum;for(int i=0;i<n;i++){for(int j=0;j<m;j++){int tmp=gtid(s|w[i][j]);a[id][tmp]=(a[id][tmp]-1+mod)%mod;tmp=gtid(s&(S^w[i][j]));a[id][tmp]=(a[id][tmp]-1+mod)%mod;}}}gauss();int tmp=gtid(bg);ans=a[tmp][tot+1]*mi(a[tmp][tmp],mod-2)%mod;printf("%lld",ans);return 0;
}
http://www.lryc.cn/news/217351.html

相关文章:

  • 【Python基础知识一】基本语法、常用数据类型等
  • 听听ChatGPT对IT行业的发展和就业前景的看法
  • 〖程序员的自我修养 - 认知剖析篇⑤〗- 选择前端还是后端?
  • Rust语言初步
  • BIMILLC算法源码解析
  • Android STR研究之五
  • python3+requests接口自动化测试实例详细操作
  • 在Node.js中,什么是中间件(middleware)?它们的作用是什么?
  • 当函数参数为一级指针,二级指针
  • Hydra post登录框爆破
  • 阿里云推出AI编程工具“通义灵码“;生成式 AI 入门教程 2
  • 使用Qt Installer Framework将自己的程序打包成安装包程序
  • 逆袭Flutter? Facebook 发布全新跨平台引擎 Hermes!
  • c++ 互斥锁使用详解 lock_guard
  • 【快速解决】Android Button页面跳转功能
  • C语言 pthread_create
  • 前端uniapp提交表单调用接口方法最新
  • OpenFeign的简单介绍和功能实操
  • webpack 高级
  • OLE DB 访问接口所需的(最大)数据长度为 18,但返回的数据长度为 6。
  • oracle (9)Storage Relationship Strut
  • React 项目结构小结
  • 4.网络之TCP
  • 电池原理与分类
  • Mongoose 开源库--Filesystem(文件系统)使用笔记
  • 新兴初创企业参展招募
  • 【Linux】Nginx安装使用负载均衡及动静分离(前后端项目部署),前端项目打包
  • 银行和金融企业为何青睐这8款项目管理工具
  • 一分钟理解npm run dev 和 npm run serve
  • HTTP 协议请求头 If-Match、If-None-Match 和 ETag