当前位置: 首页 > news >正文

深度学习实战(11):使用多层感知器分类器对手写数字进行分类

使用多层感知器分类器对手写数字进行分类

图 1:多层感知器网络

1.简介

1.1 什么是多层感知器(MLP)?

MLP 是一种监督机器学习 (ML) 算法,属于前馈人工神经网络 [1] 类。该算法本质上是在数据上进行训练以学习函数。给定一组特征和一个目标变量(例如标签),它会学习一个用于分类或回归的非线性函数。在本文中,我们将只关注分类案例。

1.2 MLP和逻辑回归有什么相似之处吗?

有!逻辑回归只有两层,即输入和输出,但是,在 MLP 模型的情况下,唯一的区别是我们可以有额外的中间非线性层。这些被称为隐藏层。除了输入节点(属于输入层的节点)之外,每个节点都是一个使用非线性激活函数的神经元[1]。由于这种非线性性质,MLP 可以学习复杂的非线性函数,从而区分不可线性分离的数据!请参见下面的图 2,了解具有一个隐藏层的 MLP 分类器的可视化表示。

1.3 MLP 是如何训练的?

MLP 使用反向传播进行训练。

1.4 MLP的主要优缺点.

优点:

  • 可以学习非线性函数,从而分离不可线性分离的数据 。
    缺点:
  • 隐藏层的损失函数导致非凸优化问题,因此存在局部最小值。
  • 不同的权重初始化可能会导致不同的输出/权重/结果。
  • MLP 有一些超参数,例如隐藏神经元的数量,需要调整的层数(时间和功耗)。
  • MLP 可能对特征缩放敏感 。
    图 2:具有一个隐藏层和标量输出的 MLP

2.使用scikit-learn的Python动手实例

2.1 数据集

对于这个实践示例,我们将使用 MNIST 数据集。 MNIST 数据库是一个著名的手写数字数据库,用于训练多个 ML 模型 。有 10 个不同数字的手写图像,因此类别数为 10 (参见图 3)。

注意:由于我们处理图像,因此这些由二维数组表示,并且数据的初始维度是每个图像的 28 by 28 ( 28x28 pixels )。然后二维图像被展平,因此在最后由矢量表示。每个 2D 图像都被转换为维度为 [1, 28x28] = [1, 784] 的 1D 向量。最后,我们的数据集有 784 个特征/变量/列。

图 3:数据集中的一些样本

2.2 数据导入与准备

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.neural_network import MLPClassifier
# Load data
X, y = fetch_openml("mnist_784", version=1, return_X_y=True)
# Normalize intensity of images to make it in the range [0,1] since 255 is the max (white).
X = X / 255.0

请记住,每个 2D 图像现在都转换为维度为 [1, 28x28] = [1, 784] 的 1D 矢量。我们现在来验证一下。

print(X.shape)

这将返回: (70000, 784) 。我们有 70k 个扁平图像(样本),每个图像包含 784 个像素(28*28=784)(变量/特征)。
因此,输入层权重矩阵的形状为

784 x #neurons_in_1st_hidden_layer.

输出层权重矩阵的形状为

#neurons_in_3rd_hidden_layer x #number_of_classes

2.3 模型训练

现在让我们构建模型、训练它并执行分类。我们将分别使用 3 个隐藏层和 50,20 and 10 个神经元。此外,我们将设置最大迭代次数 100 ,并将学习率设置为 0.1 。这些是我在简介中提到的超参数。我们不会在这里微调它们。

# Split the data into train/test sets
X_train, X_test = X[:60000], X[60000:]
y_train, y_test = y[:60000], y[60000:]
classifier = MLPClassifier(hidden_layer_sizes=(50,20,10),max_iter=100,alpha=1e-4,solver="sgd",verbose=10,random_state=1,learning_rate_init=0.1,
)
# fit the model on the training data
classifier.fit(X_train, y_train)

2.4 模型评估

现在,让我们评估模型。我们将估计训练和测试数据和标签的平均准确度。

print("Training set score: %f" % classifier.score(X_train, y_train))
print("Test set score: %f" % classifier.score(X_test, y_test))

训练集分数:

0.998633

测试集分数:

0.970300

2.5 成本函数演变的可视化

训练期间损失减少的速度有多快?让我们制作一个漂亮的图表看一看!

fig, axes = plt.subplots(1, 1)
axes.plot(classifier.loss_curve_, 'o-')
axes.set_xlabel("number of iteration")
axes.set_ylabel("loss")
plt.show()

图 4:训练迭代中损失的演变
在这里,我们看到损失在训练期间下降得非常快,并且在 40th 迭代后饱和(请记住,我们将最大 100 次迭代定义为超参数)。

2.6 可视化学习到的权重

这里我们首先需要了解权重(每一层的学习模型参数)是如何存储的。

根据文档,属性 classifier.coefs_ 是形状为 (n_layers-1, ) 的权重数组的列表,其中索引 i 处的权重矩阵表示层 i 和层 i+1 之间的权重。在这个例子中,我们定义了 3 个隐藏层,我们还有输入层和输出层。因此,我们希望层间权重有 4 个权重数组(图 5 中的 in-L1, L1-L2, L2-L3 和 L2-out )。

类似地, classifier.intercepts_ 是偏置向量列表,其中索引 i 处的向量表示添加到层 i+1 的偏置值。

在这里插入图片描述

让我们验证一下:

len(classifier.intercepts_) == len(classifier.coefs_) == 4

正确返回 True 。

输入层权重矩阵的形状为

784 x #neurons_in_1st_hidden_layer.

输出层权重矩阵的形状为

#neurons_in_3rd_hidden_layer x #number_of_classes.

2.7 可视化输入层的学习权重

target_layer = 0 #0 is input, 1 is 1st hidden etc
fig, axes = plt.subplots(1, 1, figsize=(15,6))
axes.imshow(np.transpose(classifier.coefs_[target_layer]), cmap=plt.get_cmap("gray"), aspect="auto")
axes.set_xlabel(f"number of neurons in {target_layer}")
axes.set_ylabel("neurons in output layer")
plt.show()

图 6:输入层和第一个隐藏层之间的神经元学习权重的可视化
将它们重新整形并绘制为 2D 图像。

# choose layer to plot
target_layer = 0 #0 is input, 1 is 1st hidden etc
fig, axes = plt.subplots(4, 4)
vmin, vmax = classifier.coefs_[0].min(), classifier.coefs_[target_layer].max()
for coef, ax in zip(classifier.coefs_[0].T, axes.ravel()):ax.matshow(coef.reshape(28, 28), cmap=plt.cm.gray, vmin=0.5 * vmin, vmax=0.5 * vmax)ax.set_xticks(())ax.set_yticks(())
plt.show()

3.总结

MLP 分类器是一种非常强大的神经网络模型,可以学习复杂数据的非线性函数。该方法使用前向传播来构建权重,然后计算损失。接下来,反向传播用于更新权重,从而减少损失。这是以迭代方式完成的,迭代次数是一个输入超参数,正如我在简介中所解释的那样。其他重要的超参数是每个隐藏层中的神经元数量和隐藏层总数。这些都需要微调。
更多Ai资讯:公主号AiCharm
在这里插入图片描述

http://www.lryc.cn/news/2148.html

相关文章:

  • ThingsBoard-警报
  • 如何去阅读源码,我总结了18条心法
  • 排序:归并排序
  • Allegro172版本线到铜皮不按照设定值避让的原因和解决办法
  • 小白该从哪方面入手学习大数据
  • 尚医通(十)数据字典加Redis缓存 | MongoDB
  • 为什么我们不再发明编程语言了?
  • 预处理指令详解
  • Redis
  • Elasticsearch5.5.1 自定义评分插件开发
  • 4.4 序列化与反序列化
  • 647. 回文子串 516. 最长回文子序列
  • 实用小妙招
  • 别让猴子跳回背上
  • 数据结构 | 线性表
  • Deepwalk深度游走算法
  • 微服务项目【服务调用分布式session共享】
  • 神经网络的万能逼近定理
  • 【信息系统项目管理师】项目管理过程的三万字大论文
  • 【C++】C++11 ~ 包装器解析
  • SpringBoot整合(三)SpringBoot发送邮件
  • 【docker知识】联合文件系统(unionFS)原理
  • 使用Lame库实现wav、pcm转mp3
  • c++11 标准模板(STL)(std::multimap)(三)
  • 【报复性赚钱】2023年5大风口行业
  • 单目相机、双目相机和RGB-D相机学习笔记(一些视频和博文网址)
  • word和wps添加mathtype选项卡
  • 获取成员userID
  • DOM编程-显示网页时钟
  • 浅谈保护数据的加密策略