当前位置: 首页 > news >正文

pytorch笔记:PackedSequence对象送入RNN

pytorch 笔记:PAD_PACKED_SEQUENCE 和PACK_PADDED_SEQUENCE-CSDN博客 

  • 当使用pack_padded_sequence得到一个PackedSequence对象并将其送入RNN(如LSTM或GRU)时,RNN内部会进行特定的操作来处理这种特殊的输入形式。
  • 使用PackedSequence的主要好处是提高效率和计算速度。因为通过跳过填充部分,RNN不需要在这些部分进行无用的计算。这特别对于处理长度差异很大的批量序列时很有帮助。

1 PackedSequence对象

  • PackedSequence是一个命名元组,其中主要的两个属性是databatch_sizes
    • data是一个1D张量,包含所有非零长度序列的元素,按照其在批次中的顺序排列。
    • batch_sizes是一个1D张量,表示每个时间步的批次大小
  • PackedSequence(data=tensor([6, 5, 1, 8, 7, 9]),batch_sizes=tensor([3, 2, 1]), sorted_indices=None, unsorted_indices=None)

 2 处理PackedSequence

  • 当RNN遇到PackedSequence作为输入时,它会按照batch_sizes中指定的方式对data进行迭代
  • 举例来说,上面例子中batch_sizes[3,2,1],那么RNN首先处理前3个元素,然后是接下来的2个元素,最后是最后一个元素。
  • 这允许RNN仅处理有效的序列部分,而跳过填充

3 输出

  • 当RNN完成对PackedSequence的处理后,它的输出同样是一个PackedSequence对象
  • 可以使用pad_packed_sequence将其转换回常规的填充张量格式,以进行后续操作或损失计算
  • 隐藏状态和单元状态(对于LSTM)也会被返回,这些状态与未打包的序列的处理方式相同

4  举例

  • 假设我们有以下3个句子,我们想要用RNN进行处理:
I love AI
Hello
PyTorch is great
  • 为了送入RNN,我们首先需要将这些句子转换为整数形式,并进行填充以保证它们在同一个批次中有相同的长度。
{'PAD': 0,'I': 1,'love': 2,'AI': 3,'Hello': 4,'PyTorch': 5,'is': 6,'great': 7
}
  • 句子转换为整数后(id):
  1. I love AI -> [1, 2, 3]
  2. Hello -> [4]
  3. PyTorch is great -> [5, 6, 7]
  • 为了将它们放入同一个批次,我们进行填充:
[1, 2, 3]
[4, 0, 0]
[5, 6, 7]
  • 假设每个单词的id 对应的embedding就是自己:
[[1], [2], [3]]
[[4], [0], [0]]
[[5], [6], [7]]
  • 使用pack_padded_sequence进行处理
import torch
from torch.nn.utils.rnn import pack_padded_sequence# 输入序列
input_seq = torch.tensor([[1,2,3], [4, 0, 0], [5,6,7]])
input_seq=input_seq.reshape(data.shape[0],input_seq.shape[1],1)
#每个单词id的embedding就是他自己
input_seq=input_seq.float()
#变成float是为了喂入RNN所需# 序列的实际长度
lengths = [3, 1, 3]# 使用pack_padded_sequence
packed = pack_padded_sequence(input_seq, lengths, batch_first=True,enforce_sorted=False)packed
'''
PackedSequence(data=tensor([[1.],[5.],[4.],[2.],[6.],[3.],[7.]]), batch_sizes=tensor([3, 2, 2]), sorted_indices=tensor([0, 2, 1]), unsorted_indices=tensor([0, 2, 1]))
'''
  • 现在,当我们将此PackedSequence送入RNN时,RNN首先处理前3个元素,因为batch_sizes的第一个元素是3。然后,它处理接下来的2个元素,最后处理剩下的2个元素。
    • 具体来说,RNN会如下处理:

      • 时间步1:根据batch_sizes[0] = 3,RNN同时处理三个句子的第一个元素。具体地说,它处理句子1的"I",句子2的"PyTorch",和句子3的"Hello"。
      • 时间步2:根据batch_sizes[1] = 2,RNN处理接下来两个句子的第二个元素,即句子1的"love"和句子2的"is"。
      • 时间步3:根据batch_sizes[2] = 2,RNN处理接下来两个句子的第三个元素,即句子1的"AI"和句子2的"great"。
  • 喂入RNN
import torch.nn as nnclass SimpleRNN(nn.Module):def __init__(self,input_size,hidden_size,num_layer=1):super(SimpleRNN,self).__init__()self.rnn=nn.RNN(input_size,hidden_size,num_layer,batch_first=True)def forward(self,x,hidden=None):packed_output,h_n=self.rnn(x,hidden)return packed_output,h_n
#单层的RNNSrnn=SimpleRNN(1,3)
Srnn(packed_data) 
'''
(PackedSequence(data=tensor([[-0.1207, -0.0247,  0.4188],[-0.3173, -0.0499,  0.6838],[-0.4900, -0.0751,  0.8415],[-0.7051, -0.1611,  0.9610],[-0.7497, -0.2117,  0.9829],[-0.3361, -0.1660,  0.9329],[ 0.4608, -0.0492,  0.1138]], grad_fn=<CatBackward0>), batch_sizes=tensor([3, 2, 2]), sorted_indices=None, unsorted_indices=None),tensor([[[-0.3361, -0.1660,  0.9329],[ 0.4608, -0.0492,  0.1138],[-0.4900, -0.0751,  0.8415]]], grad_fn=<StackBackward0>))
'''
  • 得到的RNN输出是pack的,hidden state没有变化
    • Srnn=SimpleRNN(1,3)
      Srnn(packed_data) 
      '''
      (PackedSequence(data=tensor([[-0.1207, -0.0247,  0.4188],[-0.3173, -0.0499,  0.6838],[-0.4900, -0.0751,  0.8415],[-0.7051, -0.1611,  0.9610],[-0.7497, -0.2117,  0.9829],[-0.3361, -0.1660,  0.9329],[ 0.4608, -0.0492,  0.1138]], grad_fn=<CatBackward0>), batch_sizes=tensor([3, 2, 2]), sorted_indices=None, unsorted_indices=None),tensor([[[-0.3361, -0.1660,  0.9329],[ 0.4608, -0.0492,  0.1138],[-0.4900, -0.0751,  0.8415]]], grad_fn=<StackBackward0>))
      '''pad_packed_sequence(Srnn(packed_data)[0],batch_first=True)
      '''
      (tensor([[[-0.1207, -0.0247,  0.4188],[-0.7051, -0.1611,  0.9610],[-0.3361, -0.1660,  0.9329]],[[-0.3173, -0.0499,  0.6838],[-0.7497, -0.2117,  0.9829],[ 0.4608, -0.0492,  0.1138]],[[-0.4900, -0.0751,  0.8415],[ 0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000,  0.0000]]], grad_fn=<TransposeBackward0>),tensor([3, 3, 1]))
      '''

http://www.lryc.cn/news/214276.html

相关文章:

  • C#WPF工具提示(ToolTip)实例
  • 智慧矿山系统中的猴车安全监测与识别
  • 网络协议--TCP连接的建立与终止
  • react条件渲染
  • Docker中Failed to initialize NVML: Unknown Error
  • 学习笔记|单样本秩和检验|假设检验摘要|Wilcoxon符号检验|规范表达|《小白爱上SPSS》课程:SPSS第十一讲 | 单样本秩和检验如何做?很轻松!
  • ttkefu在线客服在客户联络领域的价值
  • 创新方案|2023如何用5种新形式重塑疫后实体门店体验
  • Aqua Data Studio 2023.1
  • 【C++智能指针】
  • gcc/g++使用格式+各种选项,预处理/编译(分析树,编译优化,生成目标代码)/汇编/链接过程(函数库,动态链接)
  • OSPF复习(2)
  • FPGA时序分析与约束(9)——主时钟约束
  • sqlite3 关系型数据库语言 SQL 语言
  • spring boot中的多环境配置
  • python3 阿里云api进行巡检发送邮件
  • 【Linux】安装使用Nginx负载均衡,并且部署前端项目
  • k8s中 pod 或节点的资源利用率监控
  • 订水商城实战教程07-搜索
  • stm32内 misc stm32f10x_hd stm32f10x_it stm32f10x_conf关系
  • 树结构及其算法-二叉查找树
  • PHP自定义文件缓存实现
  • 猫耳 Android 播放框架开发实践
  • linux下df -h 命令一直卡住的解决方法
  • 系统架构设计热点知识
  • 2023-在mac下安装Homebrew的国内镜像
  • Ubuntu 20.04设置虚拟内存 (交换内存swap)解决内存不足
  • RabbitMQ-死信交换机和死信队列
  • [HNCTF 2022 WEEK2]easy_include 文件包含遇上nginx
  • python中transform和apply的区别是什么