当前位置: 首页 > news >正文

C/C++笔试易错与高频题型图解知识点(三)——数据结构部分(持续更新中)

目录

1. 排序

1.1 冒泡排序的改进

2. 二叉树

2.1 二叉树的性质

3. 栈 & 队列

3.1 循环队列

3.2 链式队列

4. 平衡二叉搜索树——AVL树、红黑树

5 优先级队列(堆)

1. 排序

1.1 冒泡排序的改进

下面的排序方法中,关键字比较次数与记录的初始排列无关的是______。

A. 希尔排序

B. 冒泡排序

C. 直接插入排序

D. 直接选择排序

答案:D

基础的冒泡排序是与初始排列无关的,但是改进的冒泡排序,当一趟排序之后没有交换,则说明序列已经有序,则可退出排序,例如一个已经排好序的序列,第一次循环之后就可以退出排序了;

所以说对比B选项和D选项,D选项肯定时最优解

2. 二叉树

2.1 二叉树的性质

① 对于任意一颗二叉树,设叶子节点个数为n0,度为二的节点的个数为n2,则满足n0 = n2 + 1

某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为() A. 不存在这样的二叉树

B. 200

C. 198(错误)

D. 199

答案:B

②深度

根节点的深度为0

③ 完全二叉树每一层的节点个数

一棵完全二叉树第六层有9个叶结点(根为第一层),则结点个数最多有()

A. 112

B. 111

C. 107

D. 109  (2^6-1 + 2^(7-1)-9*2  = 109)   

答案:D   :第六层满节点,题目要求第六层有9个叶子节点,则需要第六层的9个节点不挂叶子节点,所以第七层节点有2^(7-1)-9*2个节点

1. 满二叉树第i层节点个数:2^(i-1);

2. 总共i层的满二叉树所有节点个数:2^i - 1

3. 队列

3.1 循环队列

现有一循环队列,其队头指针为front,队尾指针为rear;循环队列长度为N。其队内有效长度为()(“左闭右开”)

A. (rear - front + N) % N + 1(错误)

B. (rear - front + N) % N

C. (rear - front) % (N + 1)

D. (rear - front + N) % (N - 1)

答案:B

3.2 链式队列

用不带头结点的单链表存储队列,其队头指针指向队头结点,队尾指针指向队尾结点,则在进行出队操作时()

A. 仅修改队头指针(错误)

B. 仅修改队尾指针

C. 队头、队尾指针都可能要修改

D. 队头、队尾指针都要修改

答案:C

※当队列只有一个节点时,出队列对头队尾指针均需要修改、

4. 栈

4.1 运算表达式

表达式3*2^(4+2*2-6*3)-5求值过程中当扫描到6时,对象栈和运算符栈为(),其中^为乘幂

A. 3,2,4,1,1;(*^(+*-

B. 3,2,8;(*^-(错误)

C. 3,2,4,2,2;(*^(-

D. 3,2,8;*^(-

答案:D

数据栈:有数据就直接入栈

运算符栈:设遍历到当前的运算符位x,如果栈不为空,比较栈顶与当前运算符优先级x,当栈顶运算符优先级大于或者等于x的优先级,则出栈,并将两个数据栈的数据出栈,计算出对应的数据,加入到数据栈中,否则将运算符入栈

/*根据上述原理模拟实现一个计算器*/
#include <iostream>
#include <unordered_map>
#include <stack>
#include <functional>
#include <string>#define MAX_PRI INT_MAXusing namespace std;
int main() {//数据栈stack<double> _data;   //运算符栈stack<char> _operator;   //运算符优先级unordered_map<char, int> pri{ {'+', 0}, {'-', 0}, {'*', 1}, {'/', 1}, {'^', 2}, {'(', MAX_PRI }, {')', MAX_PRI}};unordered_map<char, function<double(double, double)>> func{{'+', [](double x, double y) -> double { return x + y; }},{'-', [](double x, double y) -> double { return x - y; }},  {'*', [](double x, double y) -> double { return x * y; }},{'/', [](double x, double y) -> double { return x / y; }},{'^', [](double x, double y) -> double { return pow(x, y); }}};string exp;cin >> exp;auto calculate = [&_data, &_operator, &func]() {char op = _operator.top();_operator.pop();double x = _data.top();_data.pop();double y = _data.top();_data.pop();_data.push(func[op](y, x));   //运算顺序与出栈顺序相反};auto stringtonum = [&exp, &pri](int& i) -> double {int j = i + 1;while (j < exp.length() && pri.find(exp[j]) == pri.end()) j++;double num = stod(exp.substr(i, j - i));i = j - 1;   return num;};for (int i = 0; i < exp.length(); ++i) {char e = exp[i];if (pri.find(e) == pri.end()) {   //当前字符不是运算符,则切割数字_data.push(stringtonum(i));} else if (e == '(') {_operator.push('(');} else if (e == ')') {while (_operator.top() != '(') {calculate();}_operator.pop();} else {//当前运算符优先级<=栈顶运算符优先级,则出栈计算while (!_operator.empty() && pri[_operator.top()] >= pri[e] && _operator.top() != '(') {calculate();}_operator.push(e);}}while (!_operator.empty()) {calculate();}cout << _data.top() << endl;
}

5. 平衡二叉搜索树——AVL树、红黑树

 若将关键字1,2,3,4,5,6,7 依次插入到初始为空的平衡二叉树 T 中,则 T 中平衡因子为 0 的分支结点的个数是( )

A. 0

B. 1

C. 2

D. 3

答案:D   (分支节点:不包含叶子节点)

 

6. 优先级队列(堆)

下述二叉树中,哪一种满足性质:从任一结点出发到根的路径上所经过的结点序列按其关键字有序()

A. 二叉排序树(错误)

B. 哈夫曼树

C. AVL树

D. 堆

答案:D 

知识点:小根堆与大根堆(详细看数据结构一、1.2节)

7. 哈希表

采用哈希表组织100万条记录,以支持字段A快速查找,则()

A. 理论上可以在常数时间内找到特定记录(错误:发生哈希冲突)

B. 所有记录必须存在内存中

C. 拉链式哈希曼最坏查找时间复杂度是O(n)

D. 哈希函数的选择跟A无关

答案:C

http://www.lryc.cn/news/214212.html

相关文章:

  • Intel oneAPI笔记--oneAPI简介、SYCL编程简介
  • Spring IOC - ConfigurationClassPostProcessor源码解析
  • Android OpenGL ES 2.0入门实践
  • sql语句性能进阶必须了解的知识点——索引失效分析
  • ctfhub技能树web题目全解
  • AMD、CMD、UMD是什么?
  • AM@微分方程相关概念@线性微分方程@一阶线性微分方程的通解
  • 基于深度学习的安全帽识别检测系统(python OpenCV yolov5)
  • Spring源码分析篇一 @Autowired 是怎样完成注入的?究竟是byType还是byName亦两者皆有
  • Goby 漏洞发布|F5 BIG-IP AJP 身份认证绕过漏洞(CVE-2023-46747)
  • Vue中watch侦听器用法
  • [算法前沿]--054-大语言模型的学习材料
  • DWA算法,仿真转为C用于无人机避障
  • 现阶段的主流数据库分别是哪几种?
  • “原生感”暴涨311%,这届年轻人不再爱浓妆?丨小红书数据分析
  • 基于深度学习的植物识别算法 - cnn opencv python 计算机竞赛
  • k8s调度约束
  • 面经(面试经验)第一步,从自我介绍开始说起
  • S/4 HANA 中的 Email Template
  • \r\n和\n的区别 回车/换行 在不同系统下的区别
  • 机械应用笔记
  • 机房精密空调发生内部设备通信故障不一会压缩机就停止工作,怎么处理?
  • 手机端运维管理系统——图扑 HT for Web
  • 中期科技:智慧公厕打造智能化城市设施,提升公共厕所管理与服务体验
  • innovus: set_ccopt_property的基本用法
  • 打造美团外卖新体验,HarmonyOS SDK持续赋能开发者共赢鸿蒙生态
  • Realtek 5G pcie网卡 RTL8126-CG简介
  • 新版Idea显示Git提交人信息
  • 外贸网站建设攻略:如何建设一个高效的外贸网站
  • 【机器学习合集】模型设计之网络宽度和深度设计 ->(个人学习记录笔记)