当前位置: 首页 > news >正文

二叉树问题——前中后遍历数组构建二叉树

摘要

利用二叉树的前序,中序,后序,有序数组来构建相关二叉树的问题。

一、构建二叉树题目

105. 从前序与中序遍历序列构造二叉树

106. 从中序与后序遍历序列构造二叉树

889. 根据前序和后序遍历构造二叉树

617. 合并二叉树

226. 翻转二叉树

109. 有序链表转换二叉搜索树

二、构建二叉树问题详解

2.1 前序中序构建二叉树

package Tree;import java.util.HashMap;/*** @BelongsProject: SeniorArchitect-LeetCode* @BelongsPackage: Tree* @Author: zhuangxiaoyan* @CreateTime: 2023-10-25  07:24* @Description: TODO* @Version: 1.0*/
public class 前序中序构建二叉树105 {// 给定的前序和中序遍历构建一个二叉树public TreeNode buildTree(int[] preorder, int[] inorder) {int prelen = preorder.length;int inlen = inorder.length;if (prelen != inlen) {throw new RuntimeException("Imcorrent input data");}HashMap<Integer, Integer> map = new HashMap<>();// 遍历一次中序遍历for (int i = 0; i < inlen; i++) {map.put(inorder[i], i);}// 然后递归调用return buildTree2(preorder, 0, prelen - 1, map, 0, inlen - 1);}private TreeNode buildTree2(int[] preorder, int preleft, int preright, HashMap<Integer, Integer> map, int inleft, int inright) {// 递归的终止条件if (preleft > preright || inleft > inright) {return null;}int rootvalue = preorder[preleft];TreeNode root = new TreeNode(rootvalue);// 获取标int pIndex = map.get(rootvalue);root.left = buildTree2(preorder, preleft + 1, pIndex - inleft + preleft, map, inleft, pIndex - 1);root.right = buildTree2(preorder, pIndex - inleft + preleft + 1, preright, map, pIndex + 1, inright);return root;}class TreeNode {int val;TreeNode left;TreeNode right;public TreeNode(int val) {this.val = val;}}
}

时间与空间复杂度分析

  • 时间复杂度:O(n) 最坏的情况就是最左(右)子树 那就需要遍历n-1个元素。
  • 空间复杂度:O(1)不需要其他的额外空间来存储元素。

2.2 中序后续构建二叉树

package Tree;import java.util.HashMap;/*** @BelongsProject: SeniorArchitect-LeetCode* @BelongsPackage: Tree* @Author: zhuangxiaoyan* @CreateTime: 2023-10-25  07:25* @Description: TODO* @Version: 1.0*/
public class 后序中序构建二叉树106 {public TreeNode buildTree(int[] inorder, int[] postorder) {int inlen = inorder.length;int postlen = postorder.length;if (inlen != postlen) {throw new RuntimeException("Incurrent input data");}HashMap<Integer, Integer> hashMap = new HashMap<>();for (int i = 0; i < inlen; i++) {hashMap.put(inorder[i], i);}return buildTree2(postorder, 0, postlen - 1, hashMap, 0, inlen - 1);}private TreeNode buildTree2(int[] postorder, int postleft, int postright, HashMap<Integer, Integer> hashMap, int inleft, int inright) {if (postleft > postright || inleft > inright) {return null;}int rootval = postorder[postright];TreeNode root = new TreeNode(rootval);int pIndex = hashMap.get(rootval);root.left = buildTree2(postorder, postleft, pIndex - inleft + postleft - 1, hashMap, inleft, pIndex - 1);root.right = buildTree2(postorder, pIndex - inleft + postleft, postright - 1, hashMap, pIndex + 1, inright);return root;}public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) {this.val = val;}TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}}
}

时间与空间复杂度分析

  • 时间复杂度:O(n) 最坏的情况就是最左(右)子树 那就需要遍历n-1个元素。
  • 空间复杂度:O(1)不需要其他的额外空间来存储元素。

2.3 前序后序构建二叉树

  • 前序遍历的结果是[1,2,4,5,3,6,7]
  • 后序遍历的结果是[4,5,2,6,7,3,1]
  • 前序遍历的特点是根节点始终出现在第一位
  • 后序遍历的特点是根节点始终出现在最后一位

但是,你会发现仅仅用这些条件还不够,虽然能很快确定根节点了,但是根节点的左子树的范围就没法确定,没法确定左子树范围,也会导致右子树也确定不了。

我们先回顾一下二叉树的前序、后序遍历
二叉树的前序遍历是:

  •     打印根节点
  •     遍历左子树
  •     遍历右子树

二叉树的后序遍历是:

  •     遍历左子树
  •     遍历右子树
  •     打印根节点

前序遍历第一个元素是根节点,后面的那一堆就是左子树,接着是右子树,而后序遍历第一个出现的是左子树,然后是右子树,最后才是根节点,上图中我用橙色标记出了左子树部分,用绿色标记出了右子树部分。

两种遍历方式得到的橙色部分数量是一样的,绿色部分数量也是一样的。所以,我们只要能确定橙色部分的范围,就可以处理左子树了,而左子树范围确定了,那么顺带右子树也就可以搞定了。

  • 如果遍历这个左子树
  • 前序遍历的结果是[2,4,5]
  • 后序遍历的结果是[4,5,2]

我们根据2就可以确定出后序遍历的左子树范围 因为后序遍历的整棵树的结果是[4,5,2,6,7,3,1]
现在我们找到2了,根节点的位置是固定出现在最后的,那么右子树的范围也就可以确定了。
后序遍历数组下标是从0开始的,我们确定了2的位置,还需要+1,这样就得到了整个左子树的个数。

总结一下

  •     用前序遍历的第一个元素创建出根节点
  •     用前序遍历的第二个元素x,去后序遍历中找对应的下标y,将y+1就能得到左子树的个数了
  •     将前序数组,后序数组拆分左右两部分
  •     递归的处理前序数组左边、后序数组右边
  •     递归的处理前序数组右边、后序数组右边
  •     返回根节点

拆分的规则如下(假设得到的左子树数量为left_count)

拆分的前序数组:

  •     左半部分[1,left_count+1)
  •     右半部分[left_count+1,N)

拆分的后序数组:

  •     左半部分[0,left_count)
  •     右半部分[left_count,N-1)
package Tree;import org.junit.Test;import java.util.Arrays;/*** @BelongsProject: SeniorArchitect-LeetCode* @BelongsPackage: Tree* @Author: zhuangxiaoyan* @CreateTime: 2023-10-31  20:55* @Description: TODO* @Version: 1.0*/
public class 前序后序构建二叉树 {public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) {this.val = val;}TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}}public TreeNode constructFromPrePost(int[] pre, int[] post) {if(pre==null || pre.length==0) {return null;}return dfs(pre,post);}private TreeNode dfs(int[] pre,int[] post) {if(pre==null || pre.length==0) {return null;}//数组长度为1时,直接返回即可if(pre.length==1) {return new TreeNode(pre[0]);}//根据前序数组的第一个元素,创建根节点TreeNode root = new TreeNode(pre[0]);int n = pre.length;for(int i=0;i<post.length;++i) {if(pre[1]==post[i]) {//根据前序数组第二个元素,确定后序数组左子树范围int left_count = i+1;//拆分前序和后序数组,分成四份int[] pre_left = Arrays.copyOfRange(pre,1,left_count+1);int[] pre_right = Arrays.copyOfRange(pre,left_count+1,n);int[] post_left = Arrays.copyOfRange(post,0,left_count);int[] post_right = Arrays.copyOfRange(post,left_count,n-1);//递归执行前序数组左边、后序数组左边root.left = dfs(pre_left,post_left);//递归执行前序数组右边、后序数组右边root.right = dfs(pre_right,post_right);break;}}//返回根节点return root;}
}

时间与空间复杂度分析

  • 时间复杂度:O(n) 最坏的情况就是最左(右)子树 那就需要遍历n-1个元素。
  • 空间复杂度:O(1)不需要其他的额外空间来存储元素。

2.4 合并二叉树

package Tree;/*** @BelongsProject: SeniorArchitect-LeetCode* @BelongsPackage: Tree* @Author: zhuangxiaoyan* @CreateTime: 2023-10-31  22:50* @Description: TODO* @Version: 1.0*/
public class 合并二叉树617 {public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) {this.val = val;}TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}}public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {if (root1 == null && root2 == null) {return null;}if (root1 == null && root2 != null) {return root2;}if (root1 != null && root2 == null) {return root1;}// 都是kongroot1.val += root2.val;root1.left = mergeTrees(root1.left, root2.left);root1.right = mergeTrees(root1.right, root2.right);return root1;}
}

时间与空间复杂度分析

  • 时间复杂度:O(n) 最坏的情况就是遍历二叉树所有元素。
  • 空间复杂度:O(1)不需要其他的额外空间来存储元素。

2.5 有序数组构建二叉树

package Tree;/*** @BelongsProject: SeniorArchitect-LeetCode* @BelongsPackage: Tree* @Author: zhuangxiaoyan* @CreateTime: 2023-10-26  08:25* @Description: TODO* @Version: 1.0*/
public class 有序数组构建二叉搜索树108 {public TreeNode sortedArrayToBST(int[] nums) {if (nums.length < 1) {return new TreeNode();}if (nums.length == 1) {return new TreeNode(nums[0]);}TreeNode root = buildTree(nums, 0, nums.length - 1);return root;}private TreeNode buildTree(int[] nums, int left, int right) {if (left > right) {return null;}int mid = left + (right - left) / 2;TreeNode root = new TreeNode(nums[mid]);root.left = buildTree(nums, left, mid - 1);root.right = buildTree(nums, mid + 1, right);return root;}public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) {this.val = val;}TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}}
}

时间与空间复杂度分析

  • 时间复杂度:O(n) 最坏的情况就是二叉树所有的元素。
  • 空间复杂度:O(1)不需要其他的额外空间来存储元素。

2.6 翻转二叉树

package Tree;/*** @BelongsProject: SeniorArchitect-LeetCode* @BelongsPackage: Tree* @Author: zhuangxiaoyan* @CreateTime: 2023-10-24  22:47* @Description: TODO* @Version: 1.0*/
public class 二叉树翻转226 {public TreeNode invertTree(TreeNode root) {if (root == null) {return root;}// 交换左右子树TreeNode tmp = root.right;root.right = root.left;root.left = tmp;// 递归的调用左右子树invertTree(root.left);invertTree(root.right);return root;}public TreeNode invertTree2(TreeNode root) {if (root == null) {return root;}// 递归左右的遍历invertTree(root.left);invertTree(root.right);// 中遍历TreeNode tmp = root.left;root.left = root.right;root.right = tmp;return root;}public TreeNode invertTree3(TreeNode root) {if (root == null) {return root;}// 递归左右的遍历invertTree3(root.left);// 中遍历TreeNode tmp = root.left;root.left = root.right;root.right = tmp;invertTree3(root.left); // 注意 这里依然要遍历左孩子,因为中间节点已经翻转了return root;}public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) {this.val = val;}TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}}}

时间与空间复杂度分析

  • 时间复杂度:O(n) 最坏的情况就是遍历所有元素。
  • 空间复杂度:O(1)不需要其他的额外空间来存储元素。

博文参考

https://leetcode.cn/circle/discuss/E3yavq/#%E6%A0%91%E4%B8%8E%E4%BA%8C%E5%8F%89%E6%A0%91%E7%AF%87

http://www.lryc.cn/news/213634.html

相关文章:

  • Java保留n位小数的方法(超简洁)
  • JavaEE-博客系统1(数据库和后端的交互)
  • 【unity/vufornia】Duplicate virtual buttons with name.../同一个ImageTarget上多个按钮失灵
  • Apache ActiveMQ 远程代码执行漏洞复现(CNVD-2023-69477)
  • 项目管理-科学管理基础-线性规划介绍及例题
  • 如何利用自定义数据对象(元数据)实现全场景身份数据治理
  • 腾讯云轻量级服务器哪个镜像比较好?
  • SC密封件的材料成分
  • 常用 sqlite3 命令
  • SpringMVC Day 08 : 文件上传下载
  • 【热带气旋】基本介绍:定义、标准、结构等
  • ue5 右击.uproject generator vs project file 错误
  • 0X01
  • centos7 配置搭建 wordpress 博客
  • 掌握Android自定义View与独家优化技巧
  • 【T3】彻底关闭服宝
  • P2359 三素数数 , 线性dp
  • 【c语言】用C语言设计一个环形缓冲区。当环形缓冲区有一半占用未处理时,提示使用了50%.
  • Python的web自动化学习(四)Selenium的显性等待(元素定位)
  • X3DAudio1_7.dll是什么,解决计算机找不到X3DAudio1_7.dll文件的方法
  • 【Python】海龟图turtle.color() 方法有关RGB颜色设置详解
  • 中科院上高院,协鑫,和数“能源数字化智能管控”合作项目开启
  • 在Mac上安装MongoDB 5.0
  • 手把手教你如何实现TNAS与云盘之间的无缝同步技巧
  • 【约会云栖】从初中至大学,我见证了科技变革的历程。
  • 【MySQL索引与优化篇】索引优化与查询优化
  • DevChat:VSCode中基于大模型的AI智能编程助手
  • Scrum master的职责
  • 数据结构:算法(特性,时间复杂度,空间复杂度)
  • SaaS 出海,如何搭建国际化服务体系?(一)