当前位置: 首页 > news >正文

数据结构与算法-(7)---栈的应用拓展-前缀表达式转换+求值

 

 🌈write in front🌈
🧸大家好,我是Aileen🧸.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流.
🆔本文由Aileen_0v0🧸 原创 CSDN首发🐒 如需转载还请通知⚠️
📝个人主页:Aileen_0v0🧸—CSDN博客
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​
📣系列专栏:Aileen_0v0🧸的PYTHON学习系列专栏——CSDN博客
🗼我的格言:"没有罗马,那就自己创造罗马~" 

目录

回顾+思路讲解

(1)中缀表达式转前缀 

(2) 前缀表达式求值


 

回顾+思路讲解

之前我们介绍过了什么是后缀表达式,以及它如何通过中缀表达式进行转换,以及关于后缀表达式的求值问题,如有遗忘👉🔗http://t.csdnimg.cn/Hl4Y9

今天我们拓展一下,前缀表达式的转换和求值问题

💫中缀转后缀表达式的思路:

从左到右扫描逐个字符扫描中缀表达式的过程中,采用一个栈来暂存未处理的操作符
这样,栈顶的操作符就是最近暂存进去的,当遇到一个新的操作符,就需要跟栈顶的操作符比较下优先级,再行处理--->新符号和栈顶对比,新的高,就入栈(因为取时也先取);       新的低,就把栈顶出栈,让栈顶的先运算

想要了解具题后缀的相关知识点点击👉🔗http://t.csdnimg.cn/9100K

中缀转前缀思路也类似,不过 

中缀表达式中运算符的优先级和结合性需要考虑,从左往右扫描的话,需要对每个运算符的优先级和结合性进行判断,才能决定是否需要先进行计算。这样会增加算法的复杂度。

从右往左扫描,则可以利用栈的特性,遇到运算符时先将其压入栈中,再比较栈顶运算符的优先级和结合性,来决定是否需要先进行计算。这样可以简化算法,提高效率。另外,从右往左扫描还可以处理右结合性的运算符。

 参考后缀表达式代码思路:

我们利用一个栈来进行中缀表达式转前缀表达式的操作。其中prec{}是一个字典,用于记录操作符的优先级,优先级由低到高依次为1~3。opStack是我们初始化的操作符栈,prefixList是用于储存前缀表达式的空列表。

我们首先将中缀表达式解析为一个tokenList列表,并反转该列表,这样我们就可以正向扫描这个列表。

在扫描过程中,对于每个操作数token,我们需要分别处理三种情况:

  1. 操作数--将其添加到前缀表达式列表prefixList中。
  2. 右括号--将其压入操作符栈opStack中。
  3. 左括号--从操作符栈opStack中弹出并返回顶部元素topToken,直到遇到右括号为止。期间,将所有弹出的操作符添加到前缀表达式列表prefixList中。

对于第4种情况---操作符,

我们需要通过while循环语句比较操作符的优先级。

如果当前操作符的优先级小于等于栈顶操作符的优先级,我们就将栈顶操作符弹出并添加到前缀表达式列表prefixList中。然后将当前操作符压入操作符栈opStack中

(1)中缀表达式转前缀 

class Stack :def __init__(self):self.items = []def isEmpty(self):return self.items == []def push(self,item):self.items.append(item)def pop(self):return  self.items.pop()def peek(self):return self.items[len(self.items) - 1]def size(self):return len(self.items)def infix_to_prefix(infix_expr):# 定义一个空字典prec{}--记录操作符优先级  -- 优先级由低到高是1~3prec = {}prec["*"] = 3prec["/"] = 3prec["+"] = 2prec["-"] = 2prec[")"] = 1opStack = Stack()#初始化操作符栈#初始化列表用于储存前缀表达式prefixList = []#将中缀表达式解析为一个 tokenList 列表,并反转该列表tokenList = infix_expr.split()[::-1]#利用split切割成一个一个,然后通过切片转置到列表里#列表的元素为:c +  ) B + A (  遇到右括号入栈,左计算for token in tokenList:#若token是操作数---添加到列表if token in "ABCDEFGHIJKLMNOPQRSTUVWXYZ" or token in "0123456789":prefixList.append(token)# )---压入操作符栈elif token == ")":opStack.push(token)# (---从操作符栈opStack中弹出并返回顶部元素topTokenelif token == "(":topToken = opStack.pop()#当topToken不是")"while topToken != ")":prefixList.append(topToken)topToken = opStack.pop()# 若token是操作符,通过while循环语句比较他们的优先级,大的操作符添加到式子末端else:while (not opStack.isEmpty()) and \(prec[opStack.peek()] > prec[token]):#opStack.pop()会直接把栈顶元素弹出并返回prefixList.append(opStack.pop())opStack.push(token)#扫描完后将栈中的元素弹出while not opStack.isEmpty():#  操作符prefixList.append(opStack.pop())#  将后缀表达式通过切片转置合成前缀表达式字符串return " ".join(prefixList[::-1])
print(infix_to_prefix("A + B * C "))

(2) 前缀表达式求值

def postfix_eval(prefix_expr):operandStack = Stack()tokenList = prefix_expr.split()for token in reversed(tokenList):if token in "0123456789":#遇到操作数,入栈operandStack.push(int(token))else:operand2 = operandStack.pop()operand1 = operandStack.pop()result = doMath(token,operand1,operand2)operandStack.push(result)return operandStack.pop()def doMath(op, op1, op2):if op == "*":return op1 * op2elif op == "/":return op1 / op2elif op == "+":return op1 + op2else:return op1 - op2print(doMath("*", 11, 11))

定义两个函数:postfix_eval()doMath()

postfix_eval()函数接受一个前缀表达式,将其转换为后缀表达式并计算结果。

在计算过程中,它先将操作数入栈,然后遇到运算符就弹出栈顶的两个元素进行计算,并将计算结果重新入栈。最终,栈中仅剩下一个元素,即表达式的计算结果。

doMath()函数用于执行基本的数学运算,包括加、减、乘、除。

程序的最后一行在调用doMath()函数,并输出结果。用于计算11乘以11的结果。

 

http://www.lryc.cn/news/213602.html

相关文章:

  • 泛型的使用
  • docker导致远程主机无法访问,docker网段冲突导致主机网络异常无法访问
  • Python的web自动化学习(三)Selenium的显性、隐形等待
  • Linux--文件操作
  • 硬件知识积累 RS422接口
  • 项目经验分享|openGauss 陈贤文:受益于开源,回馈于开源
  • 实时检测并识别视频中的汽车车牌
  • 使用 pyspark 进行 Clustering 的简单例子 -- KMeans
  • LeetCode75——Day22
  • 【SOC基础】单片机学习案例汇总 Part1:电机驱动、点亮LED
  • 【HTML】HTML基础知识扫盲
  • 【Mybatis-Plus】常见的@table类注解
  • Android WMS——操作View(七)
  • 算法__数组排序_冒泡排序直接选择排序快速排序
  • ByteBuffer的原理和使用详解
  • 【MySql】10- 实践篇(八)
  • 【三方登录-Apple】iOS 苹果授权登录(sign in with Apple)之开发者配置一
  • 可视化 | 数据可视化降维算法梳理
  • 分布式:一文吃透分布式事务和seata事务
  • Java架构师前沿技术
  • OpenCV ycrcb颜色空间
  • SPSS两独立样本t检验
  • 视频格式高效转换:MP4视频批量转MKV格式的方法
  • 0028Java程序设计-智能农场监控报警系统设计与实现
  • 数据结构和算法——用C语言实现所有图状结构及相关算法
  • JavaScript一些数据类型介绍
  • 正向代理和反向代理与负载均衡
  • 制造执行系统(MES)的核心功能是什么?
  • uniapp如何使用mumu模拟器
  • 【MATLAB源码-第64期】matlab基于DWA算法的机器人局部路径规划包含动态障碍物和静态障碍物。