当前位置: 首页 > news >正文

KNN模型

使用K-Nearest Neighbors (KNN)算法进行分类。首先加载一个数据集,然后进行预处理,选择最佳的K值,并训练一个KNN模型。
# encoding=utf-8
import numpy as np
datas = np.loadtxt('datingTestSet2.txt')  # 加载数据集,返回一个numpy数组
# 提取特征和标签
x_data = datas[:, 0:3]  # 提取前三列数据作为特征
y_data = datas[:, 3]  # 提取第四列数据作为标签
print('标准化前:', x_data)  # 特征矩阵
print(y_data)  # 标签向量
# 数据maxmin标准化
from sklearn.preprocessing import MinMaxScaler  # 用于数据的标准化
std = MinMaxScaler()  # 创建一个MinMaxScaler对象
x_data = std.fit_transform(x_data)  # 标准化
print('标准化:', x_data)
# 拆分数据集(训练集和测试集)
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.2,
                                                    random_state=123)  # 测试集占总数据的20%,随机种子设为123以保证结果的可重复性
# 建立KNN模型
from sklearn.neighbors import KNeighborsClassifier
# 使用交叉验证法评估模型性能
from sklearn.model_selection import cross_val_score
k_range = range(1, 31)  # 创建一个范围从1到30的序列,用于试验不同的K值。
k_error = []  # 创建一个空列表,用于存储每个K值对应的错误率。
# 找最合适的k,既平均值最高
for k in k_range:
    model_kun = KNeighborsClassifier(n_neighbors=k)
    scores = cross_val_score(model_kun, x_train, y_train, cv=6, scoring="accuracy") 
    # 将数据集分成6个子集
    # 估计方法对象 数据特征 数据标签 几折交叉验证
    meanscores = scores.mean()  # 平均值
    k_error.append(1 - meanscores)  # 将准确率的平均值转换为错误率
    print("k=", k, "meanscores=", meanscores)
# 可视化K值和错误率的关系
import matplotlib.pyplot as plt
plt.plot(k_range, k_error)  # 绘制K值与错误率的图像
plt.show()
# 建立KNN分类器模型,并使用训练集进行训练
model_kun = KNeighborsClassifier(n_neighbors=9)  # n_neighbors=9表示在预测时,KNN分类器将考虑最近的9个邻居,并根据这9个邻居中最常见的类别来预测输入样本的类别
model_kun.fit(x_train, y_train)  # 使用训练集对模型进行训练
scores = model_kun.score(x_test, y_test)  # 使用测试集评估模型性能,返回准确率
print('准确率为:', scores)

 

 

 

 

 使用KNN算法加载鸢尾花数据集

# 加载鸢尾花数据集
from sklearn.datasets import load_irisiris = load_iris()
print(iris)
x_data = iris.data  # 样本数据
y_data = iris.target  # 标签数据
print("标准化前:", x_data)# 数据maxmin标准化
from sklearn.preprocessing import MinMaxScalermms = MinMaxScaler()
x_data = mms.fit_transform(x_data)
print(x_data)# 拆分数据集(训练集和测试集)
from sklearn.model_selection import train_test_splitx_train, x_test, y_train, y_test = train_test_split(x_data, y_data,   test_size=0.2,random_state=123)# 建立knn模型
from sklearn.neighbors import KNeighborsClassifierfrom sklearn.model_selection import cross_val_scorek_range=range(1,31)
k_error=[] #错误率# 找最合适的k,既平均值最高
for k in k_range:model_kun=KNeighborsClassifier(n_neighbors=k)scores=cross_val_score(model_kun,x_train,y_train,cv=6,scoring="accuracy")# 估计方法对象 数据特征 数据标签 几折交叉验证meanscores=scores.mean()    # 平均值k_error.append(1-meanscores)    # 错误率print("k=",k,"meanscores=",meanscores)# 将k的值和错误率可视化出来,比较好找
import matplotlib.pyplot as plt
plt.plot(k_range,k_error)
plt.show()model_knn = KNeighborsClassifier(n_neighbors=10)model_knn.fit(x_train, y_train)
scores = model_knn.score(x_test, y_test)  # 准确率
print(scores)

 

http://www.lryc.cn/news/213202.html

相关文章:

  • Python 学习1 基础
  • 网络协议--TCP的超时与重传
  • Thread
  • FOC系列(二)----继续学习DRV8301芯片
  • A. Directional Increase -前缀和与差分理解 + 思维
  • openpnp - java调试环境 - 最好只保留一套jdk环境
  • AI技术的钓鱼邮件有多强
  • vue/react项目刷新页面出现404报错的原因及解决办法
  • 黑客技术(网络安全)——如何高效学习
  • 53.MongoDB分片集群高级集群架构详解
  • Servlet 上下文参数
  • ChatGPT正在测试原生文件分析功能,DALL·E 3能P图啦!
  • 三相马达的电机故障维护
  • 【易售小程序项目】后端部署、Uniapp项目Web部署
  • prometheus监控kafka
  • 【STL】:list用法详解
  • SQL Wildcards 通配符
  • 入门必学 | R语言for循环的常规应用
  • metaRTC集成flutter ui demo编译指南
  • int怎么转成QString?
  • JavaScript进阶(二十九): 走近 es6 之 new.target
  • JVM虚拟机:堆结构的逻辑分区
  • RabbitMQ学习02
  • android中的Package安装、卸载、更新替换流程
  • 思维训练第三课 反意疑问句
  • nvm安装步骤
  • 关于比较级(内含名词比较级)
  • 【算法|动态规划 | 线性dp | 最长上升子序列模型No.1】AcWing1017.怪盗基德的滑翔翼 AcWing1014.登山
  • 2023年道路运输企业主要负责人证模拟考试题库及道路运输企业主要负责人理论考试试题
  • Linux学习第26天:异步通知驱动开发: 主动